MatroideIn matematica, e in particolare in combinatoria, il termine matroide si applica a strutture che consentono di trattare una nozione di "indipendenza" che generalizza la indipendenza lineare degli spazi vettoriali. In effetti per talune di queste strutture è stato usato anche il termine struttura di indipendenza. Queste strutture riguardano, direttamente o indirettamente, collezioni di sottoinsiemi di un dato insieme ambiente le quali posseggono proprietà particolari. Le matroidi si possono definire in una varietà sorprendentemente ampia di modi, ciascuno corrispondente a un tipo di entità (insiemi indipendenti, insiemi dipendenti, basi, insiemi chiusi o flats, operatore di chiusura, circuiti (insiemi dipendenti minimali), funzione rango, iperpiani, reticoli geometrici). Volendo essere formalmente più precisi, si individua una dozzina di specie di strutture che risultano criptomorfe; inoltre ciascuna di queste specie di strutture può essere definita servendosi di numerosi sistemi di assiomi. Questo fa supporre che nella teoria delle matroidi confluiscono molti concetti dotati di rilevante importanza. Si deve inoltre segnalare subito che si trovano numerosi e svariati esempi di matroidi. Quindi la teoria delle matroidi permette di inquadrare in modo unitario una grandissima varietà di fatti matematici. In effetti il suo sviluppo ha contribuito in misura notevolissima a dare organicità alla combinatoria e a farla diventare un settore della matematica solidamente strutturato. Infine va segnalato che essa presenta collegamenti con numerosi settori della matematica, sia "pura" sia "applicata" (algebra, geometria, ottimizzazione, ricerca operativa, teoria e pratica degli algoritmi) e anche con discipline più applicative come l'ingegneria strutturale e la chimica molecolare. In questo articolo capofila introduciamo le matroidi in due modi, fondati rispettivamente sulle nozioni di insieme indipendente e di operatore di chiusura. Si tratta di due definizioni relativamente semplici e in grado di dare buona evidenza ad alcuni dei tipi di entità che caratterizzano le matroidi. Matroide degli indipendentiSi definisce matroide degli indipendenti una coppia M = (E, I), sistema di indipendenza, nella quale E è un insieme detto insieme ambiente o insieme sostegno della matroide e I è una collezione di sottoinsiemi di E chiamati insiemi indipendenti della M, i quali soddisfano le seguenti proprietà:
Se l'ambiente è finito, le richieste precedenti bastano per la definizione, ma se è infinito servono altre condizioni piuttosto complesse; qui non affrontiamo questi problemi, ma ci limitiamo a menzionare la proprietà che caratterizza una matroide finitaria:
Una matroide è detta finito dimensionale o di rango finito se esiste un numero naturale tale che non esiste alcun insieme indipendente con cardinalità superiore a esso. Le prime due proprietà richieste per le matroidi degli indipendenti sono molto semplici, ma la motivazione della terza proprietà non è tanto evidente. Essa implica che, dati due insiemi indipendenti della stessa cardinalità, ogni elemento di uno dei due si può sostituire con qualche elemento dell'altro in modo da ottenere un altro insieme indipendente: questa conseguenza giustifica il termine "scambio". Per chiarire meglio la portata del terzo assioma è opportuno esaminare qualche esempio significativo. Procediamo ora a definire alcuni oggetti con proprietà specifiche in una matroide degli indipendenti M = (E, I).
Matroide della chiusuraDefiniamo ora le matroidi mediante un operatore di chiusura, cioè considerando un insieme ambiente e una funzioni di chiusura su di esso che possiede particolari proprietà. Definiamo come matroide della chiusura una coppia (E,cl) dove E è un insieme finito e cl una funzione del tipo P(E) ^mapsto; P(E) che soddisfa le seguenti condizioni, per arbitrari elementi a, b di E e per arbitrari sottoinsiemi Y, Z di E:
Si dimostra che una matroide di chiusura è logicamente equivalente a una matroide degli indipendenti finitaria il cui operatore di chiusura definito sugli insiemi indipendenti coincide con l'operatore di chiusura introdotto con la definizione. A questo punto sappiamo che quando si deve trattare con una matroide, si ha la possibilità di scegliere se definirla precisando il suo operatore di chiusura, oppure mediante i suoi insiemi indipendenti; questa seconda possibilità è spesso desiderabile, specialmente in applicazioni di natura geometrica. Osserviamo che, all'opposto, l'operatore di chiusura di uno spazio topologico tendenzialmente non possiede la proprietà di scambio (2), mentre possiede una diversa proprietà caratteristica. Esempi
Si osservi che in questo modo si ottiene una matroide anche da un multigrafo infinito; una tale matroide è finitaria perché tutti i cicli sono finiti; inoltre essa è finito-dimensionale se il numero dei vertici è finito, anche se il numero degli spigoli è infinito). Consideriamo, all'opposto, una situazione che non porta a una matroide. Sia E l'insieme dei nodi di un grafo e chiamiamo insiemi di nodi indipendenti quelli che possono essere colorati con non più di tre colori senza coincidenze fra nodi adiacenti. L'insieme vuoto soddisfa alla condizione e ogni sottoinsieme di nodi tricolorabile è tricolorabile; non vale invece la proprietà di scambio, in quanto si possono avere due sottografi massimali tricolorabili con diversi numeri di nodi, come mostrato nella figura alla destra. Ulteriori definizioni e proprietàFacciamo riferimento a una matroide degli indipendenti (E,I). Un sottoinsieme di E viene detto dipendente se non è indipendente. Un insieme dipendente minimale, cioè tale che ogni suo sottoinsieme proprio è indipendente viene chiamato circuito (questo termine proviene dall'esempio precedente della matroide grafica). Diciamo che un sottoinsieme A di E, genera (spans) M se la sua chiusura è l'intero E. Un insieme indipendente massimale, cioè che non è propriamente contenuto in alcun altro indipendente, viene chiamato base (questo termine proviene dal precedente esempio sullo spazio vettoriale). Un fatto importante è che tutte le basi di una matroide hanno lo stesso numero di elementi; tale numero viene detto rango della M. In generale, invece, i circuiti di M possono avere cardinalità differenti. Nel precedente esempio della matroide dell'algebra lineare, una base è anche una base nel senso dell'algebra lineare del sottospazio generato da E e un circuito è un insieme minimale di vettori dipendenti di E. Nella matroide dei cicli una base corrisponde a una sottoforesta massimale del grafo G e i circuiti sono cicli semplici del grafo. Nell'esempio nel quale gli insiemi di al più k elementi sono gli indipendenti, base è ogni sottoinsieme di E con k elementi e circuito ogni sottoinsieme di k + 1 elementi. Se A è un sottoinsieme di E, allora si può definire una matroide degli indipendenti su A assumendo come suoi insiemi indipendenti i sottoinsiemi indipendenti nella M che sono contenuti nella A. Questo consente di parlare di sottomatroidi e di assegnare un rango a ogni sottoinsieme di E. Se M=(E,I) è una matroide finita e B denota la collezione delle sue basi, cioè dei suoi insiemi indipendenti massimali, si dice matroide duale' della M e si denota con M*, la matroide che ha come insieme ambiente lo stesso E e come collezione delle basi la collezione dei sottoinsiemi che sono complementari di qualche base in B. Un sottoinsieme di E è indipendente in M* se e solo se è incluso nel complemento di qualche base di M, o equivalentemente se e solo se il suo complemento genera M. Si verifica facilmente che M* è proprio una matroide. Vengono anche proposte le duali di matroidi infinite, ma le loro definizioni incontrano delle difficoltà e il problema della dualità tra queste matroidi non è ancora stato risolto in modo soddisfacente. Ulteriori esempiPoco dopo l'articolo fondante di Witney, si è scoperto che l'indipendenza algebrica è una indipendenza di matroide. Consideriamo un campo K e un suo campo di estensione L. Un sottoinsieme finito x1, ..., xk di L si dice algebricamente indipendente se non esiste alcun polinomio non nullo f(t1, ..., tk), con coefficienti in K, tale che f(x1, ..., xk) = 0. La coppia costituita dall'insieme ambiente L e dalla indipendenza algebrica è una matroide finitaria che viene chiamata matroide algebrica piena di ambiente L su K. Il rango di tale matroide è uguale al grado di trascendenza di L su K. Si dice poi matroide algebrica ogni sottomatroide di una matroide algebrica piena. Successivamente si è trovato che la teoria dei trasversali fornisce un altro genere di matroide chiamato matroide trasversale. Bibliografia
Voci correlate
Collegamenti esterni
|