IstantoneIn fisica teorica e in fisica matematica, un istantone (o pseudoparticella[1][2][3]) è una soluzione classica delle equazioni del moto con un'azione finita e non nulla, o in meccanica quantistica o in teoria quantistica dei campi. Più precisamente, è una soluzione delle equazioni del moto di una teoria classica dei campi su uno spaziotempo euclideo.[4] Nelle teorie quantistiche di questo tipo, le soluzioni del moto possono essere pensate come i punti critici dell'azione. Tali punti critici possono essere massimi o minimi locali, o punti di sella. Gli istantoni sono importanti nella teoria quantistica dei campi perché compaiono nell'integrale sui cammini come le prime correzioni quantistiche al comportamento classico del sistema, e possono essere usati per studiare il comportamento di tunnel in vari sistemi come le teorie di Yang-Mills. CalcoloSe supponiamo che esistano soluzioni delle equazioni del moto dell'azione di Yang-Mills con azione finita, allora la curvatura della soluzione all'infinito (presa come limite) deve essere zero. Questo significa che l'invariante di Chern-Simons può essere definita in uno spazio tridimensionale. Questo equivale, grazie al teorema di Stokes, a prendere l'integrale
Questa è un invariante omotopico e ci dice a quale classe di omotopia appartiene l'istantone. L'azione di Yang-Mills è data da: dove * è il duale di Hodge. Poiché l'integrale di un integrando non negativo è sempre non negativo, per tutti i θ reali. Questo significa: Se questo legame viene saturato, allora la soluzione è uno stato BPS. Per tali stati, si ha *F=F oppure *F=-F dipendentemente dal segno dell'invariante omotopico. Note
Bibliografia
|