Folium di Cartesio

Folium di Cartesio per a=1
Il Folium di Cartesio può essere rappresentato dall'intersezione tra una funzione del tipo e il piano z = 0

Il Folium di Cartesio è una curva di equazione:

La curva presenta nell'origine un nodo con tangenti coincidenti con gli assi coordinati.

Storia

Nel gennaio 1638 Cartesio, in una lettera a Mersenne, la propose come curva in cui non era applicabile il metodo delle tangenti di Fermat. Nell'agosto dello stesso anno Fermat rispose dimostrando il contrario e chiamando tale curva "feuille" (foglia). I primi però a chiamarla "folium di Cartesio" furono De Moivre e d'Alembert rispettivamente su "Storia dell´Accademia delle Scienze" e su "Enciclopedia metodica".

Parametrizzazione

Le coordinate parametriche sono:

Equazione polare

L'equazione polare è:

Altri progetti

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica