Cupola triangolare

Cupola triangolare
TipoCupola
Solido di Johnson
J2 - J3 - J4
Forma facce1+3 Triangoli
3 Quadrati
1 Esagono
Nº facce8
Nº spigoli15
Nº vertici9
Incidenza dei vertici6(3.4.6)
3(3.4.3.4)
Gruppo di simmetriaC3v
ProprietàConvessità
Politopi correlati
Poliedro duale
Sviluppo piano

In geometria, la cupola triangolare è un solido di 8 facce appartenente alla famiglia delle cupole, che può essere visto come la metà di un cubottaedro.

Caratteristiche

Come detto, questo solido fa parte della famiglia delle cupole, esso è quindi un prismatoide, ed è in particolare costituito da un triangolo e un esagono posti su piani paralleli congiunti da tre triangoli e tre rettangoli alternati.[1]

Nel caso in cui i poligoni che ne costituiscono le facce laterali siano triangoli equilateri e quadrati, allora la cupola triangolare diventa uno dei 92 solidi di Johnson, in particolare quello indicato come J3, ossia un poliedro strettamente convesso avente come facce dei poligoni regolari ma comunque non appartenente alla famiglia dei poliedri uniformi.

Formule

Considerando una cupola triangolare avente come facce dei poligoni regolari aventi lato di lunghezza , le formule per il calcolo del volume , della superficie e dell'altezza risultano essere:

Poliedro duale

Il poliedro duale della cupola triangolare è un poliedro avente 6 facce triangolari e 3 facce a forma di aquilone.

Poliedro duale Sviluppo piano del duale

Poliedri e tassellature dello spazio correlati

La cupola triangolare può essere aumentata aggiungendo una piramide quadrata su ognuna delle sue tre facce quadrate. A questo punto, se si considerano separate tutte le facce triangolari, allora si ottiene un deltaedro non strettamente convesso con 22 facce di cui alcune complanari, e che per questo non può essere considerato un solido di Johnson, se invece si considerano le facce triangolari fuse tra loro, si ottiene un solito che topologicamente è un'altra cupola triangolare avente come facce laterali tre triangoli e tre trapezi isosceli alternati.

Una cupola triangolare aumentata

Se utilizzata assieme a piramidi quadrate e/o a ottaedri una cupola triangolare può essere utilizzata per ottenere una tassellatura dello spazio completa e non uniforme.[2]

Altre cupole convesse

La cupola triangolare è uno dei tre solidi non banali facenti parte della famiglia delle cupole aventi come facce solamente poligoni regolari assieme alla cupola quadrata (o tetragonale) e a quella pentagonale. Come si vede dallo schema sottostante, un prisma triangolare può essere considerato una cupola digonale, mentre la cupola esagonale è una figura piana. Cupole con n maggiore di 6 si possono ottenere solo ammettendo come facce laterali triangoli isosceli e non più equilateri.

Famiglia di cupole convesse
n 2 3 4 5 6
Nome {2} || t{2} {3} || t{3} {4} || t{4} {5} || t{5} {6} || t{6}
Codice 2c 3c 4c 5c 6c
Cupola
Cupola digonale

Cupola triangolare

Cupola quadrata

Cupola pentagonale

Cupola esagonale
(Piana)
Poliedri
uniformi
correlati
Prisma triangolare
Cubottaedro
Rombicubottaedro
Rombicosidodecaedro
Tassellatura
rombitriesagonale

Note

  1. ^ MathWorld.
  2. ^ J3 honeycombs, su woodenpolyhedra.web.fc2.com, Wooden Polyhedra. URL consultato il 10 giugno 2021.

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica