Yasutaka IharaYasutaka Ihara
Yasutaka Ihara (伊原 康隆, Ihara Yasutaka), né en 1938 dans la préfecture de Tokyo, est un mathématicien japonais, professeur émérite à l'Institut de recherches pour les sciences mathématiques (RIMS). Ses recherches portent sur la théorie des nombres. On lui doit notamment le lemme d'Ihara et la fonction zêta d'Ihara. BiographieIhara a obtenu son doctorat à l'université de Tokyo en 1967 avec une thèse intitulée Hecke polynomials as congruence zeta functions in elliptic modular case[1]. Entre 1965 et 1966, Ihara a travaillé à l'Institute for Advanced Study[2]. Il a été professeur à l'université de Tokyo puis au Research Institute for Mathematical Sciences (RIMS) de l'université de Kyōto. En 2002, il a pris sa retraite du RIMS en tant que professeur émérite, puis est devenu professeur à l'Université Chūō.[réf. nécessaire] DistinctionsEn 1970, il est conférencier invité, avec une conférence intitulée Non abelian class fields over function fields in special cases, au congrès international des mathématiciens (ICM) à Nice. En 1990, Ihara a donné une conférence plénière intitulée Braids, Galois groups and some arithmetic functions au congrès international des mathématiciens de Kyoto. Ihara a obtenu le Prix Iyanaga de la Société mathématique du Japon en 1973. Un colloque en son honneur a eu lieu à l'occasion de son 80e anniversaire, intitulé Profinite monodromy, Galois representations, and Complex functions[3]. Parmi ses doctorants, il y a Takayuki Oda, Kazuya Kato, Masanobu Kaneko[1]. Travaux de rechercheIhara travaille sur les applications géométriques et arithmétiques de la théorie de Galois. Dans les années 1960, il introduit une fonction appelée fonction zêta d'Ihara[4]. En théorie des graphes, la fonction zêta d'Ihara a une certaine interprétation, conjecturée par Jean-Pierre Serre et démontrée par Toshikazu Sunada en 1985. Sunada a également prouvé qu'un graphe régulier est un graphe de Ramanujan si et seulement si sa fonction zêta d'Ihara vérifie un analogue de l'hypothèse de Riemann[5]. Publications (sélection)
Ces deux volumes ont été réédités et réunis en un seul volume, avec des notes de l'auteur :
En tant qu'éditeur :
Comme auteur notamment :
Notes et références
Liens externes
|