Théorème de Lindemann-WeierstrassEn mathématiques, le théorème de Lindemann-Weierstrass établit que si des nombres algébriques α1, … , αn sont linéairement indépendants sur le corps Q des nombres rationnels, alors leurs exponentielles eα1, … , eαn sont algébriquement indépendantes sur Q. En d'autres termes, l'extension Q(eα1, … , eαn) de Q est transcendante de degré n. Une formulation équivalente du théorème est la suivante[1] : si α0, … , αn sont des nombres algébriques distincts alors eα0, … , eαn sont linéairement indépendants sur le corps Q des nombres algébriques, c'est-à-dire : pour tous nombres algébriques ai non tous nuls. En 1882, ce théorème fut annoncé par Ferdinand von Lindemann à la fin de son article sur le cas particulier n = 1, et fut aussitôt démontré par Karl Weierstrass, qui diffusa son manuscrit mais différa jusqu'en 1885 sa publication[2],[3]. Le cas n = 1En 1882, Lindemann avait esquissé[2] la preuve du fait que pour tout nombre algébrique a non nul, le nombre ea est transcendant (ce qui redémontrait que e est transcendant et prouvait que π l'est aussi). C'est le cas n = 1 du théorème démontré par Weierstrass. En effet (avec la première formulation),
En utilisant la seconde formulation, on peut le réécrire :
Conjecture p-adiqueL'analogue p-adique du théorème de Lindemann-Weierstrass est la conjecture suivante : « soient [p un nombre premier et] β1, … , βn des nombres p-adiques algébriques [Q-linéairement indépendants et] appartenant au domaine de convergence de l'exponentielle p-adique expp. Alors les n nombres expp(β1), … , expp(βn) sont algébriquement indépendants sur Q[4]. » Notes et références(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Lindemann–Weierstrass theorem » (voir la liste des auteurs).
Voir aussiArticles connexesLien externe(en) « Proof of Lindemann-Weierstrass theorem and that e and π are transcendental » (démonstration tirée de Baker 1990 et détaillée), sur le site PlanetMath. |