avec ξi ∈ [xi–1, xi], tend vers une limite S lorsque le pas max(xi– xi – 1) tend vers 0[1], alors S est appelée l'intégrale de Stieltjes (ou parfois l'intégrale de Riemann-Stieltjes[2]) de la fonction f par rapport à g. On la note
ou simplement ∫b a f dg.
Propriétés
Si les fonctions f et g possèdent un point de discontinuité en commun, alors l'intégrale n'existe pas.
Cependant, si f est continue et gà variation bornée, cette intégrale est bien définie[3],[4]. Elle l'est également si f est seulement Riemann-intégrable mais g est absolument continue, et elle coïncide alors avec l'intégrale de fg'au sens de Lebesgue[5] (ou de Riemann si de plus g' est Riemann-intégrable) :
De plus, dans ces conditions suffisantes d'existence, f et g sont interchangeables. En effet :
Théorème d'intégration par parties[6] — Si l'une des deux intégrales de Stieltjes ou existe alors l'autre aussi, et leur somme est égale à
Démonstration
Supposons par exemple que la seconde existe. En ajoutant à la « subdivision marquée » ci-dessus les points et , on trouve :
On conclut en utilisant que max(ξj – ξj – 1) ≤ 2 max(xi – xi – 1).
La première formule se démontre comme dans le cas où g est continûment dérivable. La deuxième s'en déduit grâce au théorème d'intégration par parties. Un corollaire de cette deuxième formule est : si h est intégrable sur [a, b] et si g est monotone, il existe un c ∈ [a, b] tel que
Si g est non seulement monotone mais décroissante positive, on peut la rendre nulle en b avant de lui appliquer ce corollaire (cela ne change pas la valeur de ∫b a g(x)h(x) dx).
Notes et références
↑(en) Tom M. Apostol, Mathematical Analysis, Pearson, , 2e éd., p. 141-142 (Def. 7.1 et Note), donne une autre définition : pour tout réel ε > 0, il existe une subdivision Pε de [a, b] telle que pour tout raffinementP = (xi) de Pε et tout marquage (ξi) de P, , et souligne qu'elle n'est pas équivalente à celle donnée ici. Son contre-exemple (p. 174, exercice 7.3.b) est f = χ]c, b], g = χ[c, b].