En spectrométrie d'émission ou d'absorption, une raie correspond à l'énergie de transition entre deux niveaux électroniques. Le spectre devrait donc présenter une bande de fréquence (ou d'énergie) infiniment mince (signal monochromatique). Dans les faits, cette raie a une certaine largeur. Dans le cas d'un gaz, la fonction de Voigt permet de modéliser la largeur de cette raie en raison[1] :
des collisions entre les molécules (élargissement lorentzien) ;
de l'effet Doppler-Fizeau dû au mouvement des molécules (élargissement gaussien).
En diffractométrie de rayons X, la fonction de Voigt permet de décrire le profil des pics de diffraction si l'on considère :
Le produit de convolution n'est pas une opération simple. À l'époque où l'informatique ne permettait pas d'effectuer ce calcul, il a fallu trouver des approximations de cette fonction de Voigt. Deux d'entre elles sont décrites ci-dessous. Il en existe également de plus complexes mais plus précises[2].
Pseudo-fonction de Voigt
Une pseudo-fonction de Voigt (pseudo-Voigt function en anglais) est la somme d'une gaussienne et d'une lorentzienne ayant la même position et la même aire. Le facteur de proportionnalité, noté η, est appelé facteur de Lorentz :
Pour η = 0, on retrouve une gaussienne et pour η = 1, on retrouve une lorentzienne.
Si l'on compare les pseudo-fonctions de Voigt avec une fonction de Voigt (σ = 1 pour la gaussienne, Γ = 1 pour la lorentzienne), le paramètre de Lorentz donnant l'écart quadratique minimal vaut :
η = 0,834 ± 0,001.
Fonction de Pearson VII
On utilise fréquemment la VIIefonction de Pearson, définie, pour x entier, par
libcerf, librairie numérique en C, contenant un codage de la fonction voigt (x, sigma, gamma), avec une précision d'environ 10-13.
L'article d'origine de W. Voigt a pour référence : Voigt, Woldemar, 1912, Das Gesetz der Intensitätsverteilung innerhalb der Linien eines Gasspektrums, Sitzungsbericht der Bayerischen Akademie der Wissenschaften, 25, 603 (see also: http://publikationen.badw.de/de/003395768)