est contenu dans NL/K(L×), où NL/K est la norme et est l'idéal maximal de K[1]. De manière équivalente, n est le plus petit entier tel que le morphisme d'Artin locale soit triviale sur . Parfois, le conducteur est défini comme où n est comme ci-dessus[2].
Le conducteur d'une extension mesure la ramification. Qualitativement, l'extension est non-ramifiée si, et seulement si, le conducteur est nul[3], et elle est modérément ramifiée si, et seulement si, le conducteur est 1[4]. Plus précisément, le conducteur calcule la non-trivialité des groupes de ramification supérieure : si s est le plus grand entier pour lequel le groupe de ramification supérieure Gs est non trivial, alors [5].
Le conducteur peut être défini de la même manière pour L/K une extension galoisienne finie non nécessairement abélienne de corps locaux[7] Cependant, il ne dépend que de Lab/K, l'extension abélienne maximale de K dans L, grace au théorème de limitation de norme, qui stipule que, dans cette situation[8],[9].
De plus, le conducteur peut être défini lorsque L et K sont autorisés à être légèrement plus généraux que locaux, à savoir s'il s'agit de corps valués complets avec un champ résiduel quasi-fini[10].
Conducteur global
Corps de nombres
Le conducteur d'une extension abélienne L/K de corps de nombres peut être défini, de manière similaire au cas local, à l'aide de la réciprocité d'Artin. Plus précisément, soit θ : Im → Gal(L/K ) soit l'application globale d'Artin où le modulem est un module définissantL / K ; on dit que la réciprocité d'Artintient pour m si θ se factorise par le groupe de classes de rayons modulo(en)m. On définit le conducteur de L/K, noté , le facteur commun le plus élevé de tous les modules pour lesquels la réciprocité est valable ; en fait, la réciprocité vaut pour , c'est donc le plus petit de ces modules[11],[12],[13].
Exemple
Prenant comme base le corps des nombres rationnels, le théorème de Kronecker-Weber énonce qu'un corps de nombres algébriques K est abélien sur Q si et seulement s'il s'agit d'un sous-corps d'un corps cyclotomique, où désigne une racine primitive n ième de l'unité[14]. Si n est le plus petit entier pour lequel cela est vrai, le conducteur de K est alors n si K est fixe par conjugaison complexe et autrement.
Relation avec les conducteurs locaux et ramification
Le conducteur global est le produit de conducteurs locaux[16] :
Par conséquent, un nombre premier fini est ramifié dans L/K si, et seulement si, il divise [17]. Un premier infini v apparaît dans le conducteur si, et seulement si, v est réel et devient complexe dans L.
↑Some authors omit infinite places from the conductor, e.g. Neukirch 1999, §VI.6
↑Yu. I. Manin et A. A. Panchishkin, Introduction to Modern Number Theory, vol. 49, Second, coll. « Encyclopaedia of Mathematical Sciences », , 155, 168 (ISBN978-3-540-20364-3, ISSN0938-0396, zbMATH1079.11002)
Jean-Pierre Serre, Algebraic Number Theory, Proceedings of an instructional conference at the University of Sussex, Brighton, 1965, London, Academic Press, (ISBN0-12-163251-2, MR0220701), « Local class field theory »