Simetría diédrica en tres dimensiones
En geometría, la simetría diédrica en tres dimensiones[1] es una de las tres secuencias infinitas de grupos de puntos en tres dimensiones que tienen un grupo de simetría que, como grupo abstracto, se corresponde con el grupo diedral Dihn (para n ≥ 2). TiposHay 3 tipos de simetría diédrica en tres dimensiones, cada uno de los cuales se muestra a continuación en tres notaciones: la notación de Schönflies notation, la notación de Coxeter y la notación orbifold.
Para un n dado, los tres tienen simetría rotacional multiplicada por n alrededor de un eje (un movimiento de rotación por un ángulo de 360°/n no cambia la disposición de los puntos del objeto), y simetría rotacional doble sobre un eje perpendicular (en consecuencia sobre estos n ejes). Para n = ∞, corresponden a tres frisos. Se utiliza la notación de Schoenflies, con la notación de Coxeter entre corchetes y la notación orbifold entre paréntesis. El término horizontal (h) se usa con respecto a un eje de rotación vertical. En 2D, el grupo de simetría Dn incluye reflexiones en líneas rectas. Cuando el plano 2D está incrustado horizontalmente en un espacio 3D, tal reflexión puede verse como la restricción a ese plano de una reflexión a través de un plano vertical, o como la restricción al plano de una rotación alrededor de la línea de reflexión, por 180°. En 3D, se distinguen las dos operaciones: el grupo Dn contiene solo rotaciones, no reflexiones. El otro grupo es el de la simetría piramidal Cnv del mismo orden, 2n. Con la simetría especular en un plano perpendicular al eje de rotación de n, se tiene Dnh, [n], (*22n). Dnd (o Dnv), [2n,2+], (2*n) tiene planos de reflexión verticales entre los ejes de rotación horizontales, no a través de ellos. Como resultado, el eje vertical es un eje de rotación impropia de 2n. Dnh es el grupo de simetría de un prisma regular de n lados y también para una bipirámide regular de n lados. Dnd es el grupo de simetría para un antiprisma regular de n lados, y también para un trapezoedro regular de n lados. Dn es el grupo de simetría de un prisma parcialmente girado. No se incluye n = 1 porque las tres simetrías son iguales a otras:
Para n = 2 no hay un eje principal y dos ejes adicionales, sino tres equivalentes.
Subgrupos
Véase también: Simetría cíclica en tres dimensiones
Para Dnh, [n,2], (*22n), orden 4n
Para Dnd, [2n,2+], (2*n), orden 4n
Dnd también es un subgrupo de D2nh. Ejemplos
Véase también
Referencias
Bibliografía
Enlaces externos
|