Una vez que hayas realizado la fusión de contenidos, pide la fusión de historiales aquí.
Este aviso fue puesto el 29 de noviembre de 2020.
En matemática, los polinomios de Chebyshev, nombrados en honor a Pafnuti Chebyshev,[1] son una familia de polinomios ortogonales que están relacionados con la fórmula de De Moivre y son definidos de forma recursiva con facilidad, tal como ocurre con los números de Fibonacci o los números de Lucas. Usualmente se hace una distinción entre polinomios de Chebyshev de primer tipo que son denotados Tn y polinomios de Chebyshev de segundo tipo, denotados Un. La letra T es usada por la transliteración alternativa del nombre Chebyshev como Tchebychef o Tschebyscheff.
Los polinomios de Chebyshev Tn o Un son polinomios de grado n y la sucesión de polinomios de Chebyshev de cualquier tipo conforma una familia de polinomios.
Ese cos(nx) es un polinomio de grado n-ésimo en cos(x) que puede obtenerse observando que cos(nx) es la parte real de un lado de la fórmula de De Moivre, y que la parte real del otro lado es un polinomio en cos(x) y sin(x), en el que todas las potencias de sin(x) son pares, luego reemplazables vía la identidad cos²(x) + sin²(x) = 1.
Esta identidad es muy útil en conjunto con la fórmula generatriz recursiva, permitiendo calcular el coseno de cualquier integral múltiple de un ángulo únicamente en términos del coseno del ángulo basal. Evaluando los dos primeros polinomios de Chebyshev:
y:
uno puede directamente determinar que:
y así sucesivamente. Para probar trivialmente si los resultados parecen razonables, basta sumar los coeficientes en ambos lados del signo igual (es decir, fijando theta igual a cero, caso en que el coseno equivale a la unidad), obteniendo que 1 = 2 - 1 en la primera expresión y 1 = 4 - 3 en la segunda.
Un corolario inmediato es la identidad de composición
Explícitamente
(sin olvidar que los cosenos hiperbólicos inversos de x y −x difieren por la constante π). A partir de un razonamiento similar al anterior, es posible desarrollar una forma cerrada para la generatriz de polinomios de Chebyshev de tercer tipo:
expresión que, por supuesto, es una forma mucho más expedita para determinar el coseno de N veces un ángulo dado que iterar cerca de N veces en la forma recursiva. Finalmente, si reemplazamos por x, podemos escribir:
Definición a partir de la ecuación de Pell
Los polinomios de Chebyshev también pueden ser definidos como las soluciones a la ecuación de Pell
en un anillo R[x] (e.g., ver Demeyer (2007), p.70). De este modo, pueden ser generados por la técnica estándar para la ecuaciones de Pell consistente en tomar potencias de una solución fundamental:
Relación entre los polinomios de Chebyshev de primer y segundo tipo
Los polinomios de Chebyshev de primer y segundo tipo están relacionados a través de las siguientes ecuaciones
La relación de recurrencia para la derivada de los polinomios de Chebyshev puede ser obtenida de estas relaciones
Equivalentemente, las dos sucesiones pueden también ser definidas a partir de un par de ecuaciones de recurrencia mutua:
Estas pueden ser obtenidas desde fórmulas trigonométricas; por ejemplo, si , entonces
Notar que tanto estas ecuaciones como las trigonométricas adquieren una forma más simple si seguimos la convención alternativa de escribir Un (el polinomio de grado n) como Un+1.
Propiedades
Ortogonalidad
Tanto Tn como Un forman una familia de polinomios ortogonales. Los polinomios de primer tipo son ortogonales con respecto al peso
en el intervalo [−1,1], i.e. tenemos:
Esto puede ser demostrado tomando x= cos(θ) y usando la identidad
Tn (cos(θ))=cos(nθ). Similarmente, los polinomios de segundo tipo son ortogonales con respecto al peso
Dado cualquier , entre los polinomios de grado con primer coeficiente 1, es tal que el valor absoluto máximo en el intervalo es mínimo.
Este valor absoluto maximal es y alcanza este máximo exactamente veces: en y y los otros puntos extremos de .
Diferenciación e integración
Las derivadas de los polinomios pueden ser menos directas. Diferenciando los polinomios en sus formas trigonométricas, es fácil mostrar que:
Las dos últimas fórmulas pueden ser numéricamente problemáticas debido a la división por cero (0/0 forma indeterminada, específicamente) en x = 1 y x = −1. Puede ser demostrado que:
En cuanto a la integración, la primera derivada de Tn implica que
y la relación de recurrencia para los polinomios de primer tipo involucrando derivadas establece que
Raíces y extremos
Un polinomio de Chebyshev de cualquier tipo con grado n tiene n raíces simples distintas, llamadas nodos de Chebyshev, en el intervalo [−1,1]. Usando la definición trigonométrica y dado que
es fácil demostrar que las raíces de Tn son
Similarmente, las raíces de Un son
Una propiedad única de los polinomios de Chebyshev de primer tipo es que en el intervalo −1 ≤ x ≤ 1 todos los valores extremos tienen valores iguales a −1 o 1. Tanto los de primer y segundo tipo tienen extremos en los puntos de borde, dados por:
Por cada entero no negativo n, Tn(x) y Un(x) son ambos polinomios de grado n.
Son funciones pares o impares de x si n is par o impar, entonces al ser escritos como polinomios de x sólo tiene términos pares o impares respectivamente.
El primer coeficiente de Tn es 2n − 1 si 1 ≤ n, pero 1 si 0 = n.
↑Los polinomios de Chebyshev fueron por vez primera presentados en: P. L. Chebyshev (1854) «Théorie des mécanismes connus sous le nom de parallélogrammes», Mémoires des Savants étrangers présentés à l’Académie de Saint-Pétersbourg, vol. 7, pag. 539–586.