Cuadratriz de OzanamLa cuadratriz de Ozanam[1] es una curva plana estudiada por el matemático francés Jacques Ozanam (1640-1718), que presenta la particularidad de permitir cuadrar la superficie de un círculo, al llevar implícitamente el número pi en sus ordenadas. La fórmula que la define es la siguiente:[2] Dicha ecuación, dado que
también se puede escribir de la forma: Esta segunda forma es la que permite deducir su construcción gráfica con mayor facilidad. Construcción gráficaPara el caso de , la ecuación de la curva queda reducida a De acuerdo con la figura adjunta, cada punto P de la curva es el resultado de la intersección de dos rectas:
Su forma coincide con la de una helicoide inscrita en un cilindro circular recto, proyectada sobre un plano que contenga al eje del cilindro (véase cuadratriz). Mecanismo para trazar la cuadratrizUn mecanismo capaz de dibujar una cuadratriz de Ozanam está formado por los componentes siguientes:[3]
Su funcionamiento comienza con el giro de la rueda dentada A, que impulsa hacia arriba la barra dentada B, y horizontalmente la barra lisa C (empujada por la biela a). La combinación de ambos movimientos se materializa en el centro de la cruceta [z], que describe el trazado de la cuadratriz de Ozanam. Resulta obvio comprobar que cuando la rueda A ha girado 180° desde la posición horizontal de la biela a, la barra dentada B se ha desplazado verticalmente una distancia , coincidente con el semiperímetro de la rueda A. Véase tambiénReferencias
Enlaces externos
|