Tonelli's theorem (functional analysis)
In mathematics, Tonelli's theorem in functional analysis is a fundamental result on the weak lower semicontinuity of nonlinear functionals on Lp spaces. As such, it has major implications for functional analysis and the calculus of variations. Roughly, it shows that weak lower semicontinuity for integral functionals is equivalent to convexity of the integral kernel. The result is attributed to the Italian mathematician Leonida Tonelli. Statement of the theoremLet be a bounded domain in -dimensional Euclidean space and let be a continuous extended real-valued function. Define a nonlinear functional on functions by Then is sequentially weakly lower semicontinuous on the space for and weakly-∗ lower semicontinuous on if and only if is convex. See alsoReferences
|