The following is a timeline of numerical analysis after 1945, and deals with developments after the invention of the modern electronic computer, which began during Second World War. For a fuller history of the subject before this period, see timeline and history of mathematics.
1940s
Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[1][2][3]
First recorded use of the term "finite element method" by Ray Clough,[19] to describe the methods of Courant, Hrenikoff, Galerkin and Zienkiewicz, among others. See also here.
Exponential integration by Certaine and Pope.
In computational fluid dynamics and numerical differential equations, Lax and Wendroff invent the Lax-Wendroff method.[20]
Fast Fourier Transform (voted one of the top 10 algorithms of the 20th century) invented by Cooley and Tukey.[21]
Verlet (re)discovers a numerical integration algorithm, (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907, hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics.
^Crank, J. (John); Nicolson, P. (Phyllis) (1947). "A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type". Proc. Camb. Phil. Soc. 43 (1): 50–67. doi:10.1007/BF02127704. S2CID16676040.
^A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, ISBN0-534-99845-3.) .
^Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
^Eduard Stiefel, U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
^Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
^Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
^Lax, PD (1954). "Weak solutions of nonlinear hyperbolic equations and their numerical approximation". Comm. Pure Appl. Math. 7: 159–193. doi:10.1002/cpa.3160070112.
^Friedrichs, KO (1954). "Symmetric hyperbolic linear differential equations". Comm. Pure Appl. Math. 7 (2): 345–392. doi:10.1002/cpa.3160070206.
^J.G.F. Francis, "The QR Transformation, I", The Computer Journal, 4(3), pages 265–271 (1961, received October 1959) online at oxfordjournals.org;J.G.F. Francis, "The QR Transformation, II" The Computer Journal, 4(4), pages 332–345 (1962) online at oxfordjournals.org.
^Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
^RW Clough, "The Finite Element Method in Plane Stress Analysis", Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, 8, 9 Sept. 1960.
^M Abramowitz and I Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Publisher: Dover Publications. Publication date: 1964; ISBN0-486-61272-4;OCLC Number:18003605 .
^MacCormack, R. W., The Effect of viscosity in hypervelocity impact cratering, AIAA Paper, 69-354 (1969).
^J. Bunch; G. W. Stewart.; Cleve Moler; Jack J. Dongarra (1979). "LINPACK User's Guide". Philadelphia, PA: SIAM. {{cite journal}}: Cite journal requires |journal= (help)
^Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (1986). Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press. ISBN0-521-30811-9.
^Saad, Y.; Schultz, M.H. (1986). "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems". SIAM J. Sci. Stat. Comput. 7 (3): 856–869. CiteSeerX10.1.1.476.951. doi:10.1137/0907058.