First recorded use of the term "finite element method" by Ray Clough,[23] to describe the methods of Courant, Hrenikoff and Zienkiewicz, among others. See also here.
Cooley and Tukey re-invent the Fast Fourier transform (voted one of the top 10 algorithms of the 20th century), an algorithm first discovered by Gauss.
Grobner bases and Buchberger's algorithm invented for algebra[31]
Frenchman Verlet (re)discovers a numerical integration algorithm,[32] (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[33] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics.[32]
Risch invents algorithm for symbolic integration.[34]
^Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
^Eduard Stiefel, U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
^Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
^Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
^Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376
^
J. G. F. Francis, "The QR Transformation, I", The Computer Journal, vol. 4, no. 3, pages 265–271 (1961, received Oct 1959) online at oxfordjournals.org;
J. G. F. Francis, "The QR Transformation, II" The Computer Journal, vol. 4, no. 4, pages 332–345 (1962) online at oxfordjournals.org.
^Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
^RW Clough, “The Finite Element Method in Plane
Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
^Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
^Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
^Risch, R. H. (1969). "The problem of integration in finite terms". Transactions of the American Mathematical Society. American Mathematical Society. 139: 167–189. doi:10.2307/1995313. JSTOR 1995313.
Risch, R. H. (1970). "The solution of the problem of integration in finite terms". Bulletin of the American Mathematical Society. 76 (3): 605–608. doi:10.1090/S0002-9904-1970-12454-5.
^B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN9782082106474; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN9780716704737.
^Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN0-7167-1186-9.
^Kenneth Appel and Wolfgang Haken, "Every planar map is four colorable, Part I: Discharging," Illinois Journal of Mathematics 21: 429–490, 1977.
^Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491–567, 1977.
^Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108–121, 1977.
^L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
^Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
^L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.