The main products of syngas fermentation include ethanol, butanol, acetic acid, butyric acid, and methane.[2]
Certain industrial processes, such as petroleum refining, steel milling, and methods for producing carbon black, coke, ammonia, and methanol, discharge enormous amounts of waste gases containing mainly CO and H 2 into the atmosphere either directly or through combustion. Biocatalysts can be exploited to convert these waste gases to chemicals and fuels as, for example, ethanol.[3] In addition, incorporating nanoparticles has been demonstrated to improve gas-liquid fluid transfer during syngas fermentation. [4]
Syngas fermentation process has advantages over a chemical process since it takes places at lower temperature and pressure, has higher reactionspecificity, tolerates higher amounts of sulfur compounds, and does not require a specific ratio of CO to H 2.[2] On the other hand, syngas fermentation has limitations such as:
The most common utilized reactor type for syngas fermentation is the stirred-tank reactor in which the mass transfer is influenced by several factors such as geometry of the reactor, impeller configuration, the agitation speed and the gas flow rate. Additionally, less investigated reactor types like Trickle-bed reactors, bubble-column reactors and gas-lift reactors have specific drawbacks and advantages regarding the abovementioned limitations.[11]
References
^ abBrown, Robert C. (2003). Biorenewable resources: engineering new products from agriculture. Ames, Iowa: Iowa State Press. ISBN0-8138-2263-7.
^ abcWorden, R.M., Bredwell, M.D., and Grethlein, A.J. (1997). Engineering issues in synthesis gas fermentations, Fuels and Chemicals from Biomass. Washington, DC: American Chemical Society, 321-335
^Klasson, K.T.; Ackerson, M. D.; Clausen, E. C.; Gaddy, J.L. (1992). "Bioconversion of synthesis gas into liquid or gaseous fuels". Enzyme and Microbial Technology. 14 (8): 602–608. doi:10.1016/0141-0229(92)90033-K.
^Abrini, J.; Naveau, H.; Nyns, E.J. (1994). "Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide". Archives of Microbiology. 161 (4): 345–351. doi:10.1007/BF00303591. S2CID206774310.
^Chang, I. S.; Kim, B. H.; Lovitt, R. W.; Bang, J. S. (2001). "Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612". Process Biochemistry. 37 (4): 411–421. doi:10.1016/S0032-9592(01)00227-8.
^Ahmed, A; Lewis, R.S. (2007). "Fermentation of biomass generated syngas:Effect of nitric oxide". Biotechnology and Bioengineering. 97 (5): 1080–1086. doi:10.1002/bit.21305. PMID17171719. S2CID21650852.