The map is a superadditive function for nonnegative real numbers because the square of is always greater than or equal to the square of plus the square of for nonnegative real numbers and :
The determinant is superadditive for nonnegative Hermitian matrix, that is, if are nonnegative Hermitian then This follows from the Minkowski determinant theorem, which more generally states that is superadditive (equivalently, concave)[1] for nonnegative Hermitian matrices of size : If are nonnegative Hermitian then
If is a superadditive function whose domain contains then To see this, take the inequality at the top: Hence
The negative of a superadditive function is subadditive.
Fekete's lemma
The major reason for the use of superadditive sequences is the following lemma due to Michael Fekete.[3]
Lemma: (Fekete) For every superadditive sequence the limit is equal to the supremum (The limit may be positive infinity, as is the case with the sequence for example.)
The analogue of Fekete's lemma holds for subadditive functions as well.
There are extensions of Fekete's lemma that do not require the definition of superadditivity above to hold for all and
There are also results that allow one to deduce the rate of convergence to the limit whose existence is stated in Fekete's lemma if some kind of both superadditivity and subadditivity is present. A good exposition of this topic may be found in Steele (1997).[4][5]
^Horst Alzer (2009). "A superadditive property of Hadamard's gamma function". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 79. Springer: 11–23. doi:10.1007/s12188-008-0009-5. S2CID123691692.
^Fekete, M. (1923). "Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten". Mathematische Zeitschrift. 17 (1): 228–249. doi:10.1007/BF01504345. S2CID186223729.