Extension of the factorial function
Hadamard's gamma function plotted over part of the real axis. Unlike the classical gamma function, it is holomorphic; there are no poles.
In mathematics , Hadamard's gamma function , named after Jacques Hadamard , is an extension of the factorial function , different from the classical gamma function (it is an instance of a pseudogamma function ). This function, with its argument shifted down by 1, interpolates the factorial and extends it to real and complex numbers in a different way than Euler's gamma function. It is defined as:
H
(
x
)
=
1
Γ
(
1
−
x
)
d
d
x
{
ln
(
Γ
(
1
2
−
x
2
)
Γ
(
1
−
x
2
)
)
}
,
{\displaystyle H(x)={\frac {1}{\Gamma (1-x)}}\,{\dfrac {d}{dx}}\left\{\ln \left({\frac {\Gamma ({\frac {1}{2}}-{\frac {x}{2}})}{\Gamma (1-{\frac {x}{2}})}}\right)\right\},}
where Γ(x ) denotes the classical gamma function. If n is a positive integer, then:
H
(
n
)
=
Γ
(
n
)
=
(
n
−
1
)
!
{\displaystyle H(n)=\Gamma (n)=(n-1)!}
Properties
Unlike the classical gamma function, Hadamard's gamma function H (x ) is an entire function , i.e. it has no poles in its domain. It satisfies the functional equation
H
(
x
+
1
)
=
x
H
(
x
)
+
1
Γ
(
1
−
x
)
,
{\displaystyle H(x+1)=xH(x)+{\frac {1}{\Gamma (1-x)}},}
with the understanding that
1
Γ
(
1
−
x
)
{\displaystyle {\tfrac {1}{\Gamma (1-x)}}}
is taken to be 0 for positive integer values of x .
Representations
Hadamard's gamma can also be expressed as
H
(
x
)
=
ψ
(
1
−
x
2
)
−
ψ
(
1
2
−
x
2
)
2
Γ
(
1
−
x
)
=
Φ
(
−
1
,
1
,
−
x
)
Γ
(
−
x
)
{\displaystyle H(x)={\frac {\psi \left(1-{\frac {x}{2}}\right)-\psi \left({\frac {1}{2}}-{\frac {x}{2}}\right)}{2\Gamma (1-x)}}={\frac {\Phi \left(-1,1,-x\right)}{\Gamma (-x)}}}
where
Φ
{\displaystyle \Phi }
is the Lerch zeta function , and as
H
(
x
)
=
Γ
(
x
)
[
1
+
sin
(
π
x
)
2
π
{
ψ
(
x
2
)
−
ψ
(
x
+
1
2
)
}
]
,
{\displaystyle H(x)=\Gamma (x)\left[1+{\frac {\sin(\pi x)}{2\pi }}\left\{\psi \left({\dfrac {x}{2}}\right)-\psi \left({\dfrac {x+1}{2}}\right)\right\}\right],}
where ψ (x ) denotes the digamma function .
See also
References