Soil biology

Soil biology is the study of microbial and faunal activity in the soil. This photo shows the activity of both.

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles (such as snakes), and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

Overview

The soil is home to a large proportion of the world's biodiversity. The links between soil organisms and soil functions are complex. The interconnectedness and complexity of this soil 'food web' means any appraisal of soil function must necessarily take into account interactions with the living communities that exist within the soil. We know that soil organisms break down organic matter, making nutrients available for uptake by plants and other organisms. The nutrients stored in the bodies of soil organisms prevent nutrient loss by leaching. Microbial exudates act to maintain soil structure, and earthworms are important in bioturbation. However, we find that we do not understand critical aspects about how these populations function and interact. The discovery of glomalin in 1995 indicates that we lack the knowledge to correctly answer some of the most basic questions about the biogeochemical cycle in soils. There is much work ahead to gain a better understanding of the ecological role of soil biological components in the biosphere.

In balanced soil, plants grow in an active and steady environment. The mineral content of the soil and its heartiful[clarification needed] structure are important for their well-being, but it is the life in the earth that powers its cycles and provides its fertility. Without the activities of soil organisms, organic materials would accumulate and litter the soil surface, and there would be no food for plants. The soil biota includes:

Of these, bacteria and fungi play key roles in maintaining a healthy soil. They act as decomposers that break down organic materials to produce detritus and other breakdown products. Soil detritivores, like earthworms, ingest detritus and decompose it. Saprotrophs, well represented by fungi and bacteria, extract soluble nutrients from delitro. The ants (macrofaunas) help by breaking down in the same way but they also provide the motion part as they move in their armies. Also the rodents, wood-eaters help the soil to be more absorbent.

Scope

Soil biology involves work in the following areas:

Complementary disciplinary approaches are necessarily utilized which involve molecular biology, genetics, ecophysiology, biogeography, ecology, soil processes, organic matter, nutrient dynamics[1] and landscape ecology.

Bacteria

Bacteria are single-cell organisms and the most numerous denizens of agriculture, with populations ranging from 100 million to 3 billion in a gram. They are capable of very rapid reproduction by binary fission (dividing into two) in favourable conditions. One bacterium is capable of producing 16 million more in just 24 hours. Most soil bacteria live close to plant roots and are often referred to as rhizobacteria. Bacteria live in soil water, including the film of moisture surrounding soil particles, and some are able to swim by means of flagella. The majority of the beneficial soil-dwelling bacteria need oxygen (and are thus termed aerobic bacteria), whilst those that do not require air are referred to as anaerobic, and tend to cause putrefaction of dead organic matter. Aerobic bacteria are most active in a soil that is moist (but not saturated, as this will deprive aerobic bacteria of the air that they require), and neutral soil pH, and where there is plenty of food (carbohydrates and micronutrients from organic matter) available. Hostile conditions will not completely kill bacteria; rather, the bacteria will stop growing and get into a dormant stage, and those individuals with pro-adaptive mutations may compete better in the new conditions. Some Gram-positive bacteria produce spores in order to wait for more favourable circumstances, and Gram-negative bacteria get into a "nonculturable" stage. Bacteria are colonized by persistent viral agents (bacteriophages) that determine gene word order in bacterial host.

From the organic gardener's point of view, the important roles that bacteria play are:

The nitrogen cycle

Nitrification

Nitrification is a vital part of the nitrogen cycle, wherein certain bacteria (which manufacture their own carbohydrate supply without using the process of photosynthesis) are able to transform nitrogen in the form of ammonium, which is produced by the decomposition of proteins, into nitrates, which are available to growing plants, and once again converted to proteins.

Nitrogen fixation

In another part of the cycle, the process of nitrogen fixation constantly puts additional nitrogen into biological circulation. This is carried out by free-living nitrogen-fixing bacteria in the soil or water such as Azotobacter, or by those that live in close symbiosis with leguminous plants, such as rhizobia. These bacteria form colonies in nodules they create on the roots of peas, beans, and related species. These are able to convert nitrogen from the atmosphere into nitrogen-containing organic substances.[2]

Denitrification

While nitrogen fixation converts nitrogen from the atmosphere into organic compounds, a series of processes called denitrification returns an approximately equal amount of nitrogen to the atmosphere. Denitrifying bacteria tend to be anaerobes, or facultatively anaerobes (can alter between the oxygen dependent and oxygen independent types of metabolisms), including Achromobacter and Pseudomonas. The purification process caused by oxygen-free conditions converts nitrates and nitrites in soil into nitrogen gas or into gaseous compounds such as nitrous oxide or nitric oxide. In excess, denitrification can lead to overall losses of available soil nitrogen and subsequent loss of soil fertility. However, fixed nitrogen may circulate many times between organisms and the soil before denitrification returns it to the atmosphere. The diagram above illustrates the nitrogen cycle.

Actinomycetota

Actinomycetota are critical in the decomposition of organic matter and in humus formation. They specialize in breaking down cellulose and lignin along with the tough chitin found on the exoskeletons of insects. Their presence is responsible for the sweet "earthy" aroma associated with a good healthy soil. They require plenty of air and a pH between 6.0 and 7.5, but are more tolerant of dry conditions than most other bacteria and fungi.[3]

Fungi

A gram of garden soil can contain around one million fungi, such as yeasts and moulds. Fungi have no chlorophyll, and are not able to photosynthesise. They cannot use atmospheric carbon dioxide as a source of carbon, therefore they are chemo-heterotrophic, meaning that, like animals, they require a chemical source of energy rather than being able to use light as an energy source, as well as organic substrates to get carbon for growth and development.

Many fungi are parasitic, often causing disease to their living host plant, although some have beneficial relationships with living plants, as illustrated below. In terms of soil and humus creation, the most important fungi tend to be saprotrophic; that is, they live on dead or decaying organic matter, thus breaking it down and converting it to forms that are available to the higher plants. A succession of fungi species will colonise the dead matter, beginning with those that use sugars and starches, which are succeeded by those that are able to break down cellulose and lignins.

Fungi spread underground by sending long thin threads known as mycelium throughout the soil; these threads can be observed throughout many soils and compost heaps. From the mycelia the fungi is able to throw up its fruiting bodies, the visible part above the soil (e.g., mushrooms, toadstools, and puffballs), which may contain millions of spores. When the fruiting body bursts, these spores are dispersed through the air to settle in fresh environments, and are able to lie dormant for up to years until the right conditions for their activation arise or the right food is made available.

Mycorrhizae

Those fungi that are able to live symbiotically with living plants, creating a relationship that is beneficial to both, are known as mycorrhizae (from myco meaning fungal and rhiza meaning root). Plant root hairs are invaded by the mycelia of the mycorrhiza, which lives partly in the soil and partly in the root, and may either cover the length of the root hair as a sheath or be concentrated around its tip. The mycorrhiza obtains the carbohydrates that it requires from the root, in return providing the plant with nutrients including nitrogen and moisture. Later the plant roots will also absorb the mycelium into its own tissues.

Beneficial mycorrhizal associations are to be found in many of our edible and flowering crops. Shewell Cooper suggests that these include at least 80% of the Brassica and Solanum families (including tomatoes and potatoes), as well as the majority of tree species, especially in forest and woodlands. Here the mycorrhizae create a fine underground mesh that extends greatly beyond the limits of the tree's roots, greatly increasing their feeding range and actually causing neighbouring trees to become physically interconnected. The benefits of mycorrhizal relations to their plant partners are not limited to nutrients, but can be essential for plant reproduction. In situations where little light is able to reach the forest floor, such as the North American pine forests, a young seedling cannot obtain sufficient light to photosynthesise for itself and will not grow properly in a sterile soil. But, if the ground is underlain by a mycorrhizal mat, then the developing seedling will throw down roots that can link with the fungal threads and through them obtain the nutrients it needs, often indirectly obtained from its parents or neighbouring trees.

David Attenborough points out the plant, fungi, animal relationship that creates a "three way harmonious trio" to be found in forest ecosystems, wherein the plant/fungi symbiosis is enhanced by animals such as the wild boar, deer, mice, or flying squirrel, which feed upon the fungi's fruiting bodies, including truffles, and cause their further spread (Private Life Of Plants, 1995). A greater understanding of the complex relationships that pervade natural systems is one of the major justifications of the organic gardener, in refraining from the use of artificial chemicals and the damage these might cause.[citation needed]

Recent research has shown that arbuscular mycorrhizal fungi produce glomalin, a protein that binds soil particles and stores both carbon and nitrogen. These glomalin-related soil proteins are an important part of soil organic matter.[4]

Invertebrates

Soil fauna affect soil formation and soil organic matter dynamically on many spatiotemporal scales.[5] Earthworms, ants and termites mix the soil as they burrow, significantly affecting soil formation. Earthworms ingest soil particles and organic residues, enhancing the availability of plant nutrients in the material that passes through and out of their bodies. By aerating and stirring the soil, and by increasing the stability of soil aggregates, these organisms help to assure the ready infiltration of water. These organisms in the soil also help improve pH levels.

Ants and termites are often referred to as "Soil engineers" because, when they create their nests, there are several chemical and physical changes made to the soil. Among these changes are increasing the presence of the most essential elements like carbon, nitrogen, and phosphorus—elements needed for plant growth.[6] They also can gather soil particles from differing depths of soil and deposit them in other places, leading to the mixing of soil so it is richer with nutrients and other elements.

Vertebrates

Gopher sticking out of burrow

The soil is also important to many mammals. Gophers, moles, prairie dogs, and other burrowing animals rely on this soil for protection and food. The animals even give back to the soil as their burrowing allows more rain, snow and water from ice to enter the soil instead of creating erosion.[7]

Table of soil life

This table includes some familiar types of soil life of soil life,[8] coherent with prevalent taxonomy as used in the linked Wikipedia articles.

Domain Kingdom Phylum Class Order Family Genus
Prokaryote Bacteria Pseudomonadota Betaproteobacteria Nitrosomonadales Nitrosomonadaceae Nitrosomonas
Prokaryote Bacteria Pseudomonadota Alphaproteobacteria Hyphomicrobiales Nitrobacteraceae Nitrobacter
Prokaryote Bacteria Pseudomonadota Alphaproteobacteria Hyphomicrobiales Rhizobiaceae Rhizobium[a]
Prokaryote Bacteria Pseudomonadota Gammaproteobacteria Pseudomonadales Azotobacteraceae Azotobacter
Prokaryote Bacteria Actinomycetota Actinomycetia
Prokaryote Bacteria "Cyanobacteria (Blue-green algae)
Prokaryote Bacteria Bacillota Clostridia Clostridiales Clostridiaceae Clostridium
Eukaryote Fungi Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Penicillium
Eukaryote Fungi Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Aspergillus
Eukaryote Fungi Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium
Eukaryote Fungi Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma
Eukaryote Fungi Basidiomycota Agaricomycetes Cantharellales Ceratobasidiaceae Rhizoctonia
Eukaryote Fungi Zygomycota Zygomycetes Mucorales Mucoraceae Mucor
Eukaryote SAR (clade) Heterokontophyta Bacillariophyceae (Diatomea algae)
Eukaryote SAR (clade) Heterokontophyta Xanthophyceae (Yellow-green algae)
Eukaryote Alveolata (clade) Ciliophora
Eukaryote Amoebozoa (clade)
Eukaryote Plantae Chlorophyta (green algae) Chlorophyceae
Eukaryote Animalia Nematoda
Eukaryote Animalia Rotifer
Eukaryote Animalia Tardigrada
Eukaryote Animalia Arthropoda Entognatha Collembola
Eukaryote Animalia Arthropoda Arachnida Acarina
Eukaryote Animalia Arthropoda Arachnida Pseudoscorpionida
Eukaryote Animalia Arthropoda Insecta Choleoptera (larvae)
Eukaryote Animalia Arthropoda Insecta Coleoptera Carabidae (Ground beetles)
Eukaryote Animalia Arthropoda Insecta Coleoptera Staphylinidae (Rove beetle)
Eukaryote Animalia Arthropoda Insecta Diptera (larvae)
Eukaryote Animalia Arthropoda Insecta Hymenoptera Formicidae (Ant)
Eukaryote Animalia Arthropoda Chilopoda (Centipede)
Eukaryote Animalia Arthropoda Diplopoda (Millipede)
Eukaryote Animalia Arthropoda Malacostraca Isopoda (woodlouse)
Eukaryote Animalia Annelida Clitellata Haplotaxida Enchytraeidae
Eukaryote Animalia Annelida Clitellata Haplotaxida Lumbricidae
Eukaryote Animalia Mollusca Gastropoda

See also

Notes

  1. ^ See Rhizobia for a list of other nitrogen-fixing bacteria occupying the similar niche of root nodules.

References

  1. ^ Ochoa-Hueso, R; Delgado-Baquerizo, M; King, PTA; Benham, M; Arca, V; Power, SA (February 2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. doi:10.1016/j.soilbio.2018.11.009. hdl:10261/336676. S2CID 92606851.
  2. ^ Nitrogen cycle diagram: http://www.epa.gov/maia/html/nitrogen.html (broken)
  3. ^ "Actinomycetes - Remarkable Antibiotic, Nitrogen Fixing, Decomposer Bacteria". www.the-compost-gardener.com. Retrieved 2019-05-08.
  4. ^ Comis, Don (September 2002). "Glomalin: Hiding Place for a Third of the World's Stored Soil Carbon". Agricultural Research: 4–7.
  5. ^ Frouz, Jan (2018-12-15). "Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization". Geoderma. 332: 161–172. Bibcode:2018Geode.332..161F. doi:10.1016/j.geoderma.2017.08.039. ISSN 0016-7061. S2CID 135319222.
  6. ^ "Impact of termite activity and its effect on soil composition". ResearchGate. Retrieved 2019-05-08.
  7. ^ "What types of animals live in the soil? Why is soil condition important to them?". Soils Matter, Get the Scoop!. 2015-06-30. Retrieved 2019-05-08.
  8. ^ (in French) Dominique Soltner [fr], Les Bases de la Production Végetal, tome I: Le Sol et son amélioration, Collection Sciences et Téchniques Agricoles, 2003

Bibliography

  • Alexander, 1977, Introduction to Soil Microbiology, 2nd edition, John Wiley
  • Alexander, 1994, Biodegradation and Bioremediation, Academic Press
  • Bardgett, R.D., 2005, The Biology of Soil: A Community and Ecosystem Approach, Oxford University Press
  • Burges, A., and Raw, F., 1967, Soil Biology: Academic Press
  • Coleman D.C. et al., 2004, Fundamentals of Soil Ecology, 2nd edition, Academic Press
  • Coyne, 1999, Soil Microbiology: An Exploratory Approach, Delmar
  • Doran, J.W., D.C. Coleman, D.F. Bezdicek and B.A. Stewart. 1994. Defining soil quality for a sustainable environment. Soil Science Society of America Special Publication Number 35, ASA, Madison Wis.
  • Paul, P.A. and F.E. Clark. 1996, Soil Microbiology and Biochemistry, 2nd edition, Academic Press
  • Richards, 1987, The Microbiology of Terrestrial Ecosystems, Longman Scientific & Technical
  • Sylvia et al., 1998, Principles and Applications of Soil Microbiology, Prentice Hall
  • Soil and Water Conservation Society, 2000, Soil Biology Primer.
  • Tate, 2000, Soil Microbiology, 2nd edition, John Wiley
  • van Elsas et al., 1997, Modern Soil Microbiology, Marcel Dekker
  • Wood, 1995, Environmental Soil Biology, 2nd edition, Blackie A & P
  • Vats, Rajeev & Sanjeev, Aggarwal. (2019). Impact of termite activity and its effect on soil composition.

Read other articles:

Chinese technology company Smartisan Technology Co., Ltd.Native name锤子 [chuí zi]Company typePrivateIndustryConsumer electronicsFoundedMay 28, 2012; 11 years ago (2012-05-28)FounderLuó YǒnghàoHeadquartersBeijing, ChinaArea servedWorldwideKey peopleLuó Yǒnghào (CEO)Wú Dézhōu (CTO)ProductsMade by Smartisan Technology Co., Ltd. Smartisan OS (2013) Smartisan T1 (2014) Smartisan U1 (Jianguo) (2015) Smartisan T2 (2015) Smartisan M1/M1L (2016) Smartisan U2 Pro (Jianguo Pr…

American soldier and Medal of Honor recipient Thomas Ward CusterCaptain Thomas W. Custer, two-time Medal of Honor recipientBorn(1845-03-15)March 15, 1845New Rumley, Ohio, U.S.DiedJune 25, 1876(1876-06-25) (aged 31)Little Bighorn, Montana Territory, U.S.BuriedFort Leavenworth National CemeteryAllegiance United States of AmericaUnionService/branchUnited States ArmyUnion ArmyYears of service1861–1876Rank Captain Brevet Lieutenant ColonelUnit 21st Ohio Volunteer Infantry Regiment 6t…

2022年肯塔基州聯邦參議員選舉 ← 2016年 2022年11月8日 (2022-11-08) 2028年 →   获提名人 蘭德·保羅 查爾斯·布克 政党 共和黨 民主党 民選得票 913,326 564,311 得票率 61.8% 38.2% 各縣結果保羅:     50–60%     60–70%     70–80%     80–90%布克:     50–60%     60–70% 选前聯邦參議員 …

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁地…

泰国陆军元帅他侬·吉滴卡宗ถนอม กิตติขจรPChW SR MPCh MWM第10任泰國總理任期1963年12月9日—1973年10月14日君主拉玛九世前任沙立·他那叻元帥继任訕耶·探瑪塞任期1958年1月1日—1958年10月20日君主拉玛九世前任乃朴·沙拉信继任沙立·他那叻元帥第32任泰國國防部長任期1957年9月23日—1973年10月14日前任鑾披汶·頌堪继任他威·尊拉塞(英语:Dawee Chullasapya) 个人资料出生(…

Cet article est une ébauche concernant une chronologie ou une date et le Manitoba. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologie du Manitoba ◄◄ 1977 1978 1979 1980 1981 1982 1983 1984 1985 ►► Chronologies Données clés 1978 1979 1980  1981  1982 1983 1984Décennies :1950 1960 1970  1980  1990 2000 2010Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires&#…

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总理…

نادي التهامي السعودي الاسم الكامل نادي التهامي الرياضي السعودي اللقب عميد الجنوب المؤسس محمد سالم باعشن[1] تأسس عام 1948 م - 1368 هـ الملعب ملعب مدينة الملك فيصل الرياضيةجيزان  السعودية(السعة: 10,000) البلد السعودية  الدوري دوري الدرجة الرابعة السعودي 2021 - 2022 2021 - 2022 الإدارة …

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Claude François – berita · surat kabar · buku · cendekiawan · JSTOR (July 2009) Claude FrançoisFrançois pada tahun 1965Informasi latar belakangNama lahirClaude Antoine Marie FrançoisNama lainClocloLahir(1939…

Former Canadian association football team Football clubKingston FCFounded2011 (as Prospect Football Club)Dissolved2014StadiumQueen's University West Campus Field, Kingston, OntarioCapacity1,000ChairmanLorne AbugovHead CoachColm MuldoonLeagueCanadian Soccer LeagueWebsiteClub website Home colours Away colours Kingston FC were a Canadian soccer team based in Kingston, Ontario, Canada. The team was awarded a franchise in 2011 as a member of the Canadian Soccer League, and participated in the league …

British Army officer (1907–1982) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Edward Russell, 26th Baron de Clifford – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this message) Lieutenant Colonel Edward Southwell Russell, 26th Baron de Clifford, OBE, TD…

Hockenheimring saat ini. Hockenheimring dari 1960-2002. Hockenheimring Baden-Württemberg merupakan sebuah sirkuit balap mobil yang terletak di Hockenheim, Jerman. Sirkuit ini lebih terkenal sebagai salah satu sirkuit tempat penyelenggaraan Grand Prix Jerman yang merupakan salah satu bagian dari kalender Formula Satu.[1] Pertama kali didirikan pada tahun 1930 sebagai salah satu basecamp tentara Jerman sewaktu Perang Dunia II, pada tahun 1960 sirkuit ini kemudian dimodifikasi sehingga pan…

Roman combatant for entertainment For other uses, see Gladiator (disambiguation). Part of the Zliten mosaic from Libya (Leptis Magna), about 2nd century AD. It shows (left to right) a thraex fighting a murmillo, a hoplomachus standing with another murmillo (who is signaling his defeat to the referee), and one of a matched pair. A gladiator (Latin: gladiator, swordsman, from gladius, sword) was an armed combatant who entertained audiences in the Roman Republic and Roman Empire in violent confront…

Relations between Palestine and the UN State of Palestine[1] United Nations membershipRepresented byState of PalestineMembershipNon-member Observer StateSinceNovember 29, 2012 (2012-11-29)Permanent RepresentativeRiyad Mansour Issues relating to the State of Palestine and aspects of the Israeli–Palestinian conflict occupy continuous debates, resolutions, and resources at the United Nations. Since its founding in 1948, the United Nations Security Council, as of January 201…

History of Latter Day Saints and Indigenous Americans Painting which hung in the Salt Lake Temple of Mormon founder Joseph Smith preaching to Native Americans in Illinois Over the past two centuries, the relationship between Native American people and Mormonism has included friendly ties, displacement, battles, slavery, education placement programs, and official and unofficial discrimination.[1] Native American people (also called American Indians) were historically considered a special …

Convective pattern on the Sun's surface Supegranulation in the chromosphere of Sun. In solar physics and observation, supergranulation is a pattern of convection cells in the Sun's photosphere. The individual convection cells are typically referred to as supergranules. The pattern was discovered in the 1950s by A.B. Hart[1] using Doppler velocity measurements showing horizontal flows on the photosphere (flow speed about 300 to 500 m/s, a tenth of that in the smaller granules). Later work…

County in North Carolina, United States County in North CarolinaCherokee CountyCountyCherokee County Courthouse in Murphy SealLocation within the U.S. state of North CarolinaNorth Carolina's location within the U.S.Coordinates: 35°08′N 84°04′W / 35.14°N 84.06°W / 35.14; -84.06Country United StatesState North CarolinaFounded1839Named forCherokee IndiansSeatMurphyLargest communityAndrewsArea • Total466.67 sq mi (1,208.7 km2) …

Swedish indie musician (born 1978) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: José González singer – news · newspapers · books · scholar · JSTOR (January 2024) (Learn how and when to re…

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (January 2020) Pollution in Manila Bay in 2008. Manila Bay is the catchment area of the Pasig and Pampanga River Basins. The Pasig River in the Philippines suffers from a high level of water pollution and efforts are being made to rehabilitate it. After World War II, massive population growth, infrastructure construction, and the dispersal of economic activities to Manila's …

Pour les articles homonymes, voir Le Brigand bien-aimé. Le Brigand bien-aimé Affiche du film Données clés Titre original Jesse James Réalisation Henry King et Irving Cummings Scénario Nunnally Johnson Acteurs principaux Tyrone Power, Henry Fonda, Nancy Kelly, Randolph Scott Sociétés de production Twentieth Century Fox Pays de production États-Unis Genre Western Durée 101 minutes Sortie 1939 Pour plus de détails, voir Fiche technique et Distribution. modifier Le Brigand bien-aimé (Jes…