Silke Bühler-Paschen
Silke Bühler-Paschen is a German-Austrian solid-state physicist and has been professor for physics at TU Wien, Austria since 2005.[1] EducationBühler-Paschen studied physics at Graz University of Technology and earned her diploma in 1992.[1] In 1995 she earned her PhD with her thesis titled "Electron transport in polymer composites" at École Polytechnique Fédérale de Lausanne.[2] CareerBühler-Paschen worked as a postdoctoral researcher at ETH Zurich between 1995 and 1998 and as a group leader at Max Planck Institute for Chemical Physics of Solids in Dresden starting in 1999, where she also became an assistant professor in 2003.[1][3] In 2005, Bühler-Paschen became the first female full professor of physics at TU Wien,[3] and she became chair of the institute for solid state physics in 2007.[4] Bühler-Paschen served as visiting professor at Nagoya University in 2001/2002[5] and at Rice University in 2016/2017.[6] She served on the ERC Starting Grant peer review panel in Condensed Matter Physics in 2019.[7] Bühler-Paschen's research was funded by the European Research Council[8] and the German Research Foundation (Deutsche Forschungsgemeinschaft).[9] She studied complex metallic alloys within an EU-funded "Network of Excellence".[10][11] Bühler-Paschen is on the Low Temperature Section board of Heidelberg University's Condensed Matter Division,[12] as well as the board of European Forum Alpbach[13] and the advisory board of the low-temperature research institute of the Bavarian Academy of Sciences and Humanities.[14] She was also on the European Physical Society's EPS Condensed Matter Board in 2019.[15] ResearchBühler-Paschen studies new materials, typically by growing high-quality single crystals, which are then characterized for their structure and composition, and whose physical properties are typically measured at low temperatures.[10] Bühler-Paschen's research focuses on strongly correlated and thermoelectric materials.[16] She studies magnetism and superconductivity in heavy fermion systems, as well as materials exhibiting the thermoelectric effect.[17] During her time in Dresden, Bühler-Paschen's research started to focus on materials with cage-like crystal structures called clathrates with respect to their potential applications as thermoelectrics.[3] Later, she discovered how the temperature-dependent rattling behavior of caged cerium atoms in such clathrates can stabilize the Kondo effect at unusually high temperatures,[18] as well as the first observed collapse of the Kondo effect due to three-dimensional quantum fluctuations.[19] Bühler-Paschen contributed to the first identification of Weyl fermions in a strongly correlated Weyl-Kondo semimetal.[20] She realized the individual toggling of different electronic degrees of freedom in correlated electron systems.[21][22] Bühler-Paschen investigated metallic materials whose electrical resistance exhibits unusual behavior with varying temperatures, which is related to superconductivity and based on quantum-critical charge fluctuations.[23][24][25][26][27][28][29] Awards and honors
Personal lifeBühler-Paschen grew up living in Brazil, Germany, the Netherlands, and Austria. She practiced gymnastics between the ages of 8 and 18 and was discovered as a model at the age of 14.[4] She has three children and her husband is also a physicist.[5] References
External links
|