Weyl semimetal

Weyl semimetals are semimetals or metals whose quasiparticle excitation is the Weyl fermion, a particle that played a crucial role in quantum field theory but has not been observed as a fundamental particle in vacuum.[1] In these materials, electrons have a linear dispersion relation, making them a solid-state analogue of relativistic massless particles.[2]

Theoretical predictions

Weyl fermions are massless chiral fermions embodying the mathematical concept of a Weyl spinor. Weyl spinors in turn play an important role in quantum field theory and the Standard Model, where they are a building block for fermions in quantum field theory. Weyl spinors are a solution to the Dirac equation derived by Hermann Weyl, called the Weyl equation.[3] For example, one-half of a charged Dirac fermion of a definite chirality is a Weyl fermion.[4]

Weyl fermions may be realized as emergent quasiparticles in a low-energy condensed matter system. This prediction was first proposed by Conyers Herring in 1937, in the context of electronic band structures of solid state systems such as electronic crystals.[5][6] Topological materials in the vicinity of band inversion transition became a primary target in search of topologically protected bulk electronic band crossings.[7]

The first (non-electronic) liquid state which is suggested, has similarly emergent but neutral excitation and theoretically interpreted superfluid's chiral anomaly as observation of Fermi points is in Helium-3 A superfluid phase.[8][non-primary source needed] Crystalline tantalum arsenide (TaAs) is the first discovered topological Weyl fermion semimetal which exhibits topological surface Fermi arcs where Weyl fermion is electrically charged along the line of original suggestion by Herring.[6][9] An electronic Weyl fermion is not only charged but stable at room temperature where there is no such superfluid or liquid state known.[citation needed]

A schematic of the Weyl semimetal state, which include the Weyl nodes and the Fermi arcs. The Weyl nodes are momentum space monopoles and anti-monopoles. The sketch is adapted from Ref.[10]

Experimental observation

A Weyl semimetal is a solid state crystal whose low energy excitations are Weyl fermions that carry electrical charge even at room temperatures.[11][12][13] A Weyl semimetal enables realization of Weyl fermions in electronic systems.[9] It is a topologically nontrivial phase of matter, together with Helium-3 A superfluid phase, that broadens the topological classification beyond topological insulators.[14] The Weyl fermions at zero energy correspond to points of bulk band degeneracy, the Weyl nodes (or Fermi points) that are separated in momentum space. Weyl fermions have distinct chiralities, either left handed or right handed.

In a Weyl semimetal crystal, the chiralities associated with the Weyl nodes (Fermi points) can be understood as topological charges, leading to monopoles and anti-monopoles of Berry curvature in momentum space, which (the splitting) serve as the topological invariant of this phase.[11] Comparable to the Dirac fermions in graphene or on the surface of topological insulators, Weyl fermions in a Weyl semimetal are the most robust electrons and do not depend on symmetries except the translation symmetry of the crystal lattice. Hence the Weyl fermion quasiparticles in a Weyl semimetal possess a high degree of mobility. Due to the nontrivial topology, a Weyl semimetal is expected to demonstrate Fermi arc electron states on its surface.[9][11] These arcs are discontinuous or disjoint segments of a two dimensional Fermi contour, which are terminated onto the projections of the Weyl fermion nodes on the surface. A 2012 theoretical investigation of superfluid Helium-3[15] suggested Fermi arcs in neutral superfluids.

A detector image (top) signals the existence of Weyl fermion nodes and the Fermi arcs.[9] The plus and minus signs note the particle's chirality. A schematic (bottom) shows the way Weyl fermions inside a crystal can be thought as monopole and antimonopole in momentum space. (Image art by Su-Yang Xu and M. Zahid Hasan)

On 16 July 2015 the first experimental observations of Weyl fermion semimetal and topological Fermi arcs in an inversion symmetry-breaking single crystal material tantalum arsenide (TaAs) were made.[9] Both Weyl fermions and Fermi arc surface states were observed using direct electronic imaging using ARPES, which established its topological character for the first time.[9] This discovery was built upon previous theoretical predictions proposed in November 2014 by a team led by Bangladeshi scientist M Zahid Hasan.[16][17]

Weyl points (Fermi points) were also observed in non-electronic systems such as photonic crystals, in fact even before their experimental observation in electronic systems[18][19][20] and Helium-3 superfluid quasiparticle spectrum (neutral fermions).[21] Note that while these systems are different from electronic condensed matter systems, the basic physics is very similar.

Crystal growth, structure and morphology

TaAs is the first discovered Weyl semimetal (conductor). Large-size (~1 cm), high-quality TaAs single crystals[22] can be obtained by chemical vapor transport method using iodine as the transport agent.

TaAs crystallizes in a body-centered tetragonal unit cell with lattice constants a = 3.44 Å and c = 11.64 Å and space group I41md (No. 109). Ta and As atoms are six coordinated to each other. This structure lacks a horizontal mirror plane and thus inversion symmetry, which is essential to realize Weyl semimetal.

TaAs single crystals have shiny facets, which can be divided into three groups: the two truncated surfaces are {001}, the trapezoid or isosceles triangular surfaces are {101}, and the rectangular ones {112}. TaAs belongs to point group 4mm, the equivalent {101} and {112} planes should form a ditetragonal appearance. The observed morphology can be vary of degenerated cases of the ideal form. Beside the initial discovery of TaAs as Weyl semimetal, many other materials such as Co2TiGe, MoTe2, WTe2, LaAlGe and PrAlGe have been identified to exhibit Weyl semimetallic behavior.[23][24]

Applications

The Weyl fermions in the bulk and the Fermi arcs on the surfaces of Weyl semimetals are of interest in physics and materials technology.[3][25] The high mobility of charged Weyl fermions may find use in electronics and computing.

In 2017,[26] a research team from Vienna University of Technology carrying out experimental work to develop new materials, and a team at Rice University carrying out theoretical work, have produced material which they term Weyl–Kondo semimetals.[27]

A group of international researchers led by a team from Boston College discovered in 2019 that the Weyl semimetal Tantalum Arsenide delivers the largest intrinsic conversion of light to electricity of any material, more than ten times larger than previously achieved.[28]

2D Weyl semimetals are spin-polarized analogues of graphene that promise access to topological properties of Weyl fermions in (2+1)-dim spacetime. In 2024, an intrinsic 2D Weyl semimetal with spin-polarized Weyl cones and topological Fermi string edge states was discovered in epitaxial monolayer bismuthene by a team from University of Missouri, National Cheng Kung University, and Oak Ridge National Laboratory. [29]

Further reading

  • Johnston, Hamish (23 July 2015). "Weyl fermions are spotted at long last". Physics World. Retrieved 22 November 2018.
  • Ciudad, David (20 August 2015). "Massless yet real". Nature Materials. 14 (9): 863. Bibcode:2015NatMa..14..863C. doi:10.1038/nmat4411. ISSN 1476-1122. PMID 26288972.
  • Jia, Shuang; Xu, Su-Yang; Hasan, M. Zahid (25 October 2016). "Weyl semimetals, Fermi arcs and chiral anomaly". Nature Materials. 15 (11): 1140–1144. arXiv:1612.00416. Bibcode:2016NatMa..15.1140J. doi:10.1038/nmat4787. PMID 27777402. S2CID 1115349.

See also

References

  1. ^ Shuang Jia, Su-Yang Xu & M. Zahid Hasan (2016). "Weyl semimetals, Fermi arcs and chiral anomalies". Nature Materials. 56 (15): 1140–1144. arXiv:1612.00416. Bibcode:2016NatMa..15.1140J. doi:10.1038/nmat4787. PMID 27777402. S2CID 1115349.
  2. ^ Pongsangangan, K. (2018). Role of Coulomb Interactions in Weyl Semimetals: Renormalisation and Symmetry Breaking (MSc Physics thesis). Utrecht university.
  3. ^ a b Johnston, Hamish (2015). "Weyl fermions are spotted at long last". Physics World.
  4. ^ Weyl, H. (1929). "Elektron und gravitation. I". Z. Phys. 56 (5–6): 330–352. Bibcode:1929ZPhy...56..330W. doi:10.1007/bf01339504. S2CID 186233130.
  5. ^ Herring, C. (1937). "Accidental Degeneracy in the Energy Bands of Crystals". Phys. Rev. 52 (4): 365–373. Bibcode:1937PhRv...52..365H. doi:10.1103/physrev.52.365.
  6. ^ a b Vishwanath, Ashvin (2015-09-08). "Where the Weyl Things Are". APS Physics. Vol. 8. p. 84. Bibcode:2015PhyOJ...8...84V. doi:10.1103/Physics.8.84.
  7. ^ Hasan, M. Zahid; Xu, Su-Yang; Neupane, Madhab (2015), "Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators", Topological Insulators, John Wiley & Sons, Ltd, pp. 55–100, doi:10.1002/9783527681594.ch4, ISBN 978-3-527-68159-4, retrieved 2020-04-27
  8. ^ Bevan, T. D. C.; Manninen, A. J.; Cook, J. B.; Hook, J. R.; Hall, H. E.; Vachaspati, T.; Volovik, G. E. (1997-04-17). "Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis". Nature. 386 (6626): 689–692. arXiv:cond-mat/9611164. Bibcode:1997Natur.386..689B. doi:10.1038/386689a0. S2CID 4315194.
  9. ^ a b c d e f Xu, S.-Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.-C.; Huang, S.-M.; Zheng, H.; Ma, J.; Sanchez, D. S.; Wang, B. K.; Bansil, A.; Chou, F.-C.; Shibayev, P. P.; Lin, H.; Jia, S.; Hasan, M. Z. (2015). "Discovery of a Weyl Fermion semimetal and topological Fermi arcs". Science. 349 (6248): 613–617. arXiv:1502.03807. Bibcode:2015Sci...349..613X. doi:10.1126/science.aaa9297. PMID 26184916. S2CID 206636457.
  10. ^ Balents, L. (2011). "Weyl electrons kiss". Physics. 4: 36. Bibcode:2011PhyOJ...4...36B. doi:10.1103/physics.4.36.
  11. ^ a b c Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. (2011). "Topological Semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates". Phys. Rev. B. 83 (20): 205101. arXiv:1007.0016. Bibcode:2011PhRvB..83t5101W. doi:10.1103/physrevb.83.205101. S2CID 119281249.
  12. ^ Burkov, A. A.; Balents, L. (2011). "Weyl Semimetal in a Topological Insulator Multilayer". Phys. Rev. Lett. 107 (12): 127205. arXiv:1105.5138. Bibcode:2011PhRvL.107l7205B. doi:10.1103/physrevlett.107.127205. PMID 22026796. S2CID 12954084.
  13. ^ Singh, Bahadur; Sharma, Ashutosh; Lin, H.; Hasan, M. Z.; Prasad, R.; Bansil, A. (2012-09-18). "Topological electronic structure and Weyl semimetal in the TlBiSe${}_{2}$ class of semiconductors". Physical Review B. 86 (11): 115208. arXiv:1209.5896. doi:10.1103/PhysRevB.86.115208. S2CID 119109505.
  14. ^ Murakami, S. (2007). "Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase". New J. Phys. 9 (9): 356. arXiv:0710.0930. Bibcode:2007NJPh....9..356M. doi:10.1088/1367-2630/9/9/356. S2CID 13999448.
  15. ^ Silaev, M. A. (2012). "Topological Fermi arcs in superfluid". Physical Review B. 86 (21): 214511. arXiv:1209.3368. Bibcode:2012PhRvB..86u4511S. doi:10.1103/PhysRevB.86.214511. S2CID 118352190.
  16. ^ Huang, S.-M.; Xu, S.-Y.; Belopolski, I.; Lee, C.-C.; Chang, G.; Wang, B. K.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C.; Jia, S.; Bansil, A.; Lin, H.; Hasan, M. Z. (2015). "A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class". Nature Communications. 6: 7373. Bibcode:2015NatCo...6.7373H. doi:10.1038/ncomms8373. PMC 4490374. PMID 26067579.
  17. ^ Weng, H.; Fang, C.; Fang, Z.; Bernevig, A.; Dai, X. (2015). "Weyl semimetal phase in non-centrosymmetric transition metal monophosphides". Phys. Rev. X. 5 (1): 011029. arXiv:1501.00060. Bibcode:2015PhRvX...5a1029W. doi:10.1103/PhysRevX.5.011029. S2CID 15298985.
  18. ^ Lu, L.; Fu, L.; Joannopoulos, J.; Soljačić, M. (2013). "Weyl points and line nodes in gyroid photonic crystals". Nature Photonics. 7 (4): 294–299. arXiv:1207.0478. Bibcode:2013NaPho...7..294L. doi:10.1038/nphoton.2013.42. S2CID 5144108.
  19. ^ Lu, L.; Wang, Z.; Ye, D.; Fu, L.; Joannopoulos, J.; Soljačić, M. (2015). "Experimental observation of Weyl points". Science. 349 (6248): 622–624. arXiv:1502.03438. Bibcode:2015Sci...349..622L. doi:10.1126/science.aaa9273. PMID 26184914. S2CID 11725179.
  20. ^ Noh, Jiho; Huang, Sheng; Leykam, Daniel; Chong, Yidong; Chen, Kevin; Rechtsman, Mikael (2017). "Experimental observation of optical Weyl points and Fermi arc-like surface states". Nature Physics. 13 (6): 611–617. arXiv:1610.01033. Bibcode:2017NatPh..13..611N. doi:10.1038/nphys4072. S2CID 45026039.
  21. ^ Volovik, G. E. (2009). The universe in a helium droplet. Oxford: Oxford University Press. ISBN 978-0-19-956484-2. OCLC 519697958.
  22. ^ Li, Zhilin; Chen, Hongxiang; Jin, Shifeng; Gan, Di; Wang, Wenjun; Guo, Liwei; Chen, Xiaolong (2016). "Weyl Semimetal TaAs: Crystal Growth, Morphology, and Thermodynamics". Cryst. Growth Des. 16 (3): 1172–1175. doi:10.1021/acs.cgd.5b01758.
  23. ^ Dulal, Rajendra P.; Dahal, Bishnu; Forbes, Andrew; Bhattarai, Niraj (2019). "Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe". Scientific Reports. 9 (1): 3342. Bibcode:2019NatSR...9.3342D. doi:10.1038/s41598-019-39037-0. PMC 6399263. PMID 30833580.
  24. ^ Bhattarai, Niraj (2020). "Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition". Journal of Materials Research. 35 (5): 454–461. arXiv:2001.01703. Bibcode:2020JMatR..35..454B. doi:10.1557/jmr.2019.320. S2CID 209862800.
  25. ^ Shekhar, C.; et al. (2015). "Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP". Nature Physics. 11 (8): 645–649. arXiv:1502.04361. Bibcode:2015NatPh..11..645S. doi:10.1038/nphys3372. S2CID 119282987.
  26. ^ Lai, Hsin-Hua; Grefe, Sarah E.; Paschen, Silke; Si, Qimiao (18 December 2017). "Weyl–Kondo semimetal in heavy-fermion systems". Proceedings of the National Academy of Sciences. 115 (1): 93–97. Bibcode:2018PNAS..115...93L. doi:10.1073/pnas.1715851115. ISSN 0027-8424. PMC 5776817. PMID 29255021.
  27. ^ Josh Gabbatiss (21 Dec 2017). "Scientists discover entirely new material that cannot be explained by classical physics". The Independent. Retrieved 22 May 2019.
  28. ^ Boston College (4 Mar 2019). "Chirality yields colossal photocurrent". phys.org. Retrieved 22 May 2019.
  29. ^ Lu, Qiangsheng; Sreenivasa Reddy, P. V.; Jeon, Hoyeon; Mazza, Alessandro R.; Brahlek, Matthew; Wu, Weikang; Yang, Shengyuan A.; Cook, Jacob; Conner, Clayton; Zhang, Xiaoqian; Chakraborty, Amarnath; Yao, Yueh-Ting; Tien, Hung-Ju; Tseng, Chun-Han; Yang, Po-Yuan; Lien, Shang-Wei; Lin, Hsin; Chiang, Tai-Chang; Vignale, Giovanni; Li, An-Ping; Chang, Tay-Rong; Moore, Rob G.; Bian, Guang (17 July 2024). "Realization of a two-dimensional Weyl semimetal and topological Fermi strings". Nature Communications. 15: 6001. arXiv:2303.02971. Bibcode:2024NatCo..15.6001L. doi:10.1038/s41467-024-50329-6.