Class of chemical compounds
Selenogallates (or selenidogallates ) are chemical compounds which contain anionic units of selenium connected to gallium . They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates . They are in the category of chalcogenotrielates or more broadly chalcogenometallates.[ 1]
Selenogallates may be produced by heating a metal azide with gallium monoselenide and selenium in a sealed tube.[ 1]
Selenogallates containing Se2 units are formed by heating with selenium. Conversely, by heating, extra selenium vapour can be lost forming a compound with less selenium.[ 2]
Properties
Most selenogallates are semiconductors. Their resistance drops on exposure to light. Also selenogallates are often coloured, most often red.
Selenogallate structures can include rings such as the four-membered ring: [GaSeGaSe ] or the five-membered [GaSeSeGaSe ]. These can be linked into chains.
Use
Selenogallates are primarily of research interest. They are being researched for photovoltaic cells where efficiencies over 20% are possible,[ 3] and for photoconductors , and non-linear optical devices.
List
name
chem
mw
crystal system
space group
unit cell Å
volume
density
comment
CAS
no
references
LiGaSe2
234.581
orthorhombic
Pna 21
a=6.8478 b=8.2575 c=6.5521 Z=4
370.5
4.206
band gap 3.39; SHG
[ 4]
[H2 dap]4 Ga4 Se10 dap = 1,2-diaminopropane
monoclinic
C 2/c
a 10.821 b 10.820 c 21.386, β 97.265°
[ 5]
[(dienH2 )(dienH)3 ]Ga5 Se10 dien = diethylenetriamine
monoclinic
P 21 /c
a 6.3116 b 13.748 c 47.890 β 90.640°
chain
[ 6]
[(tetaH2 )3 (teta)]Ga6 Se12 teta = triethylenetetramine
monoclinic
Cc
a 20.566 b 25.896 c 12.785 β 125.568°
chain
[ 6]
[bappH2][Ga2 Se4 ] bapp =1,4-Bis-(3-aminopropyl)piperazine
657.63
triclinic
P 1
a=6.3517 b=7.8498 c=10.7818 α=71.457° β=84.925° γ=72.084° Z=1
484.93
2.30
yellow;
[ 7]
[1,3-pdaH2 ][Ga2 Se2 (Se2 )(Se3 )] 1,3-pda = 1,3-diaminopropane
monoclinic
P 21
a 7.5724 b 12.3856 c 8.0889 β 94.120°
band gap 2.08 eV; GaSeSeSeGaSe & GaSeSeGaSe rings; red
[ 8]
[1,4-bdaH2 ][Ga2 Se3 (Se2 )] 1,4-bda = 1,4-diaminobutane
monoclinic
C 2/c
a 11.7660 b 11.7743 c 10.9763 β 110.170°
band gap 2.32 eV; orange
[ 8]
[Me2 NH2 ]2 [Ga2 Se2 (Se2 )2 ]
monoclinic
P 21 /c
a 14.13 b 8.456 c 14.07 β 100.32°
band gap 2.07 eV; red
[ 8]
α-[AEPH]2 [Ga2 Se2 (Se2 )2 ] AEP = N -(2-aminoethyl)piperazine
monoclinic
Pn
a 6.981 b 15.436 c 11.831 β 91.462°
band gap 1.93 eV; red
[ 8]
β-[AEPH]2 [Ga2 Se2 (Se2 )2 ]
monoclinic
P 21 /c
a 10.623 b 16.495 c 7.163 β 94.93°
band gap 2.10 eV; red
[ 8]
[Ga(en)3 ][Ga3 Se7 (en)] · H2 O
1090.02
orthorhombic
Pna 21
a=14.279 b=9.616 c=19.676 Z=4
2701.6
2.680
bicyclic Ga3 Se7
[ 9]
NaGaS2
monoclinic
C 2/c
a 10.226 b 10.227 c 13.506 β 100.926°
1389.9
[ 10]
NaGaS2 •H2 O
monoclinic
C 2/c
a=9.5160 b=113986 c=17.8761 β= 101.590
1899
[ 10]
NaGa3 Se5
626.95
orthorhombic
P 21 21 21
a =9.764 b =13.624 c =27.000 Z=16
3591.6
4.638
[ 11]
KGaSe2
266.74
monoclinic
C 2/c
a = 10.878, b = 10.872, c = 15.380, β = 100.18° Z=16
1790.3
3.959
air stable; light yellow; mp=965 °C; [Ga4 Se10 ]8− units connected into sheets; band gap 2.60 eV
[ 12]
Cr2.37 Ga3 Se8
monoclinic
C 2/m
magnetic semiconductor; band gap 0.26 eV
[ 13]
MnGa2 Se4
band gap 2.7 eV
[ 14]
[Mn(en)3][Ga2Se5] en = Ethylenediamine
771.51
orthorhombic
Pbcn
a=9.772 b=15.297 c=13.749 Z=4
2055.2
2.50
red; {[Ga2 Se5 ]2- }∞ chains Ga2 Se2 and Ga2 Se3 rings
[ 7]
[Mn(dap)3 ]0.5 GaSe2
orthorhombic
Cmcm
a 9.645 b 16.754 c 12.891
[ 5]
[Mn(atep)]Ga2 S4 atep = 4-(2-aminoethyl)triethylenetetramine
monoclinic
P 21 /n
a 9.909 b 11.947 c 14.831, β 102.268°
[ 5]
[Co(en)3 ]Ga2 Se
orthorhombic
Cmcm
a 9.692 b 15.631 c 12.698
band gap 3.27 eV
[ 6]
{[Ni(tepa)]2 SO4 }[Ni(tepa)(Ga4 S6 (SH)4 )] tepa = tetraethylenepentamine
monoclinic
C 2/c
a 38.829 b 12.290 c 22.471 β 98.398°
[ 5]
cupric selenogallate
CuGaSe2
291.186
tetragonal
a = 5.5963 c = 11.0036 Z=4
344.617
5.612
metallic grey
[ 15]
ZnGa2 Se4
tetragonal
I 4 2m
[ 16]
ZnGa2 Se4
cubic
Fm 3 m
>15.5GPa
[ 16]
Na3 Zn2 Ga2 Se4
519.90
tetragonal
I 41 acd
a 13.481 c 19.26 Z=16
3500
3.946
red
[ 17]
Na6 Zn3 Ga2 Se9
monoclinic
C 2/c
a 16.71 b 16.69 c 13.79 β 101.346°
[ 18]
KZn4 Ga5 Se12
R 3
SHG
[ 19]
LiGaGe2 Se6
695.60
orthorhombic
Fdd 2
a 12.5035 b 23.710 c 7.1177
2110.1
4.336
brown; band gap 2.64 eV; mp=710 °C
[ 20] [ 21]
Li2 Ga2 GeS6
orthorhombic
Fdd 2
a =12.0796 b =22.73 c =6.84048
[ 22]
NaGaGe3 Se8
monoclinic
P 21 /c
a 7.233 b 11.889 c 17.550 β 101.75°
[ 23]
KGaGeSe4
497.25
monoclinic
P 21 /c
a=7.3552 b=12.4151 c=17.6213 β =97.026 Z=8
1597.02
4.136
yellow
[ 24]
RbGaSe2
313.11
monoclinic
C 2/c
a = 10.954, b = 10.949, c = 16.064, β = 99.841° Z=16
1898.2
4.382
colourless; mp=930 °C; ∞ 2 [Ga4 Se8 8− ] layers of supertetrahedra;
[ 1]
RbZn4 Ga5 Se12
R 3
SHG
[ 19]
RbGaGeSe4
543.62
orthorhombic
Pnma
a=17.5750 b=7.4718 c=12.4449 Z=8
1634.23
4.419
orange
[ 24]
AgGaSe2
tetragonal
I 4 2d
a = 5.9921, c = 10.883
5.71
transparent from 0.71 to 18 μm; band gap ~1.7
[ 25]
AgGa5 Se8
P 4 2m
a=5.50 c=11.04
band gap 2.1 eV
[ 25]
Ag9 GaSe6
P 21 3
band gap 0.56 eV
[ 25]
Ag9 GaSe6
cubic
F 4 3m
a=11.126
[ 25]
Lix Ag1–x GaSe2 (x = 0.2–0.8)
tetragonal
I 4 2d
SHG
[ 4]
Na0.45 Ag0.55 Ga3 Se5
trigonal
R 32
a=13.466 c=16.495 Z=12
2590.5
SHG 1.9 × AGS
[ 26]
KAg3 Ga8 Se14
2025.91
monoclinic
Cm
a 12.8805 b 11.6857 c 9.6600 β 115.998° Z=2
1306.87
5.148
orange
[ 27]
AgGaGe5 Se12
red; transparent for 0.6–16.5 μm; band gap 2.2 eV
[ 28]
CdGa2 Se4
tetragonal
I 4
a=5.3167 c =10.2858 Z=2
semiconductor
[ 29] [ 30]
CdGa2 Se4
cubic
F 43m
a =5.64 Z=4
>21 GPa metallic
[ 30]
CdGa2 Se4
cubic
Fm 3 m
a =5.03 Z=4
4-7.4 GPa
[ 30]
KCd4 Ga5 Se12
trigonal
R 3
a 14.362 b 14.362 c 9.724
[ 31]
RbCd4 Ga5 Se12
trigonal
R 3
a 14.4055 b 14.4055 c 9.7688
band gap 2.19 eV; SHG=19×AgGaS2
[ 32] [ 31]
InGaSe2
tetragonal
I 4/mcm
a = 8.051, c = 6.317 Z=4
[ 33]
SnGa4 Se7
622.08
monoclinic
Pc
a=7.269 b=6.361 c=12.408 β =106.556 Z=2
549.9
3.757
light yellow;SHG 3.8 × AgGaS2
[ 34]
KGaSnSe4 -cP 84
543.35
cubic
Pa 3
a=13.5555 Z=12
2490.8
4.347
red
[ 24]
RbGaSnSe4 -cP 84
cubic
Pa 3
a=13.7200 Z=12
589.72
4.550
[ 24]
RbGaSn2 Se6
866.33
trigonal
R 3
a=10.4697 c=9.476 Z=3
899.5
4.798
deep red
[ 35]
SnGa2 GeSe6
804.48
orthorhombic
Fdd 2
a = 47.195, b = 7.521, c = 12.183, Z = 16
4324
4.943
red; SHG 1.7 × AgGaS2
CsGaSe2 -m C64
monoclinic
C 2/c
a = 11.043, b = 11.015, c = 16.810, β = 99.49°, Z = 16
2016.7
light grey; layers of supertetrahedra ∞ 2 [Ga4 Se8 4– ]; band gap 3.5 eV
[ 36]
CsGaSe2 -mC 16
monoclinic
C 2/c
a = 7.651, b = 12.552, c = 6.170, β = 113.62°, Z = 4
542.9
over 610 °C; chains ∞ 1 [GaSe2 – ]
[ 36]
CsGaSe3
monoclinic
P 21 /c
a =7.727, b =13.014, c =6.705, β =106.39°, Z =4
red; chains; band gap 2.25 eV
[ 37]
Cs2 Ga2 Se5
800.07
monoclinic
C 2/c
a = 15.3911, b = 7.3577, c = 12.9219, β = 126.395°, Z = 4
1177.89
4.51
yellow; ∞ 1 [Ga2 Se3 (Se2 )2– ] band gap 1.95 eV
[ 38]
Cs4 Ga6 Se11
triclinic
P 1
a=9.707 b=9.888 c=16.780 α=76.425° β=77.076° γ=60.876°
1356.3
∞ 1 [Ga6Se11 ]4–
[ 39]
Cs6 Ga2 Se6
monoclinic
P 21 /c
a=8.480 b=13.644 c=11.115 β =126.22 Z=2
mp=685 °C; isolated double tetrahedra [Ga2 Se6 ]6−
[ 40]
Cs8 Ga4 Se10
triclinic
P 1
a= 7.870 b=9.420 c=11.282 α=103.84° β=93.43° γ=80.88° Z=1
4.42
tetrameric
[ 41]
Cs10 Ga6 Se14
monoclinic
C 2/m
a=18.233 b=12.889 c=9.668 β=108.20 Z=2
4.39
hexameric
[ 41]
(Cs6 Cl)6 Cs3 [Ga53 Se96 ]
16671.51
trigonal
R 3 m
a = 11.990, c = 50.012 Z=1
6226.5
4.446
yellow; band gap 2.74 eV
[ 42]
CsZn4 Ga5 Se12
trigonal
R 3
[ 19]
CsGaGeSe4
591.06
orthorhombic
Pnma
a=17.7666 b=7.5171 c=12.6383 Z=8
1687.9
4.652
white
[ 24]
Cs2 Ge3 Ga6 Se14
2007.41
P 3 m 1
a=7.6396 c=13.5866 Z=1
686.72
4.854
black
[ 43]
CsAgGa2 Se4
monoclinic
P 21 /c
a =11.225, b =7.944, c =21.303, β =103.10, Z =8
1850.3
layered
[ 44]
CsCd4 Ga5 Se12
trigonal
R 3
a 14.4204 b 14.4204 c 9.7803
band gap 2.21 eV; SHG=16×AgGaS2
[ 32] [ 31]
BaGa4 Se7
monoclinic
Pc
a = 7.625, b = 6.511, c = 14.702, β = 121.24°
transparent between 0.47 and 18.0 μm; melts 968 °C; SHG
[ 45] [ 46]
Ba4 Ga2 Se8
132.48
monoclinic
P 21 /c
a=13.2393 b=6.4305 c=20.6432 β =104.3148 Z=4
1702.90
5.151
black air stable; band gap 1.51 eV
[ 47] [ 48]
Ba5 Ga2 Se8
orthorhombic
Cmca
a 23.433 b 12.461 c 12.214
band gap 2.51 eV
[ 49]
Ba5 Ga4 Se10
1755.18
tetragonal
I4 /mcm
a = 8.752, c = 13.971 Z = 2
1070.2
5.447
red; bicyclic ring with Ga-Ga bridge; band gap 2.20 eV
[ 50]
Ba3 GaSe4 Cl
orthorhombic
Pnma
a 12.691 b 9.870 c 8.716
[ 51]
Ba3 GaSe4 Br
orthorhombic
Pnma
a = 12.8248, b = 9.9608, c = 8.7690 Z = 4
band gap 1.7 eV
[ 52]
LiBa4 Ga5 Se12
1852.42
tetragonal
P 4 21 c
a 13.591 c 6.515 Z=2
1203.3
5.113
yellow; band gap 2.44 eV; SHG 1.7×AgGaS2
[ 32] [ 53]
NaBaGaSe3
orthorhombic
Pnma
a 20.46 b 9.177 c 7.177
1347
colourless
[ 54]
(Na0.60 Ba0.70 )Ga2 Se4
tetragonal
I 4cm
a 7.9549 c 6.2836
397.6
4.725
pale yellow
[ 55]
KBa3 Ga5 Se10 Cl2
tetragonal
I 4
a 8.6341 c 15.644
1166.2
band gap 2.04 eV; SHG=10×AgGaS2
[ 32] [ 56]
MnBa4 Ga4 Se10 Cl2
tetragonal
I 4
8.5858 c 15.7739
band gap 2.8 eV; SHG=30×AgGaS2
[ 32] [ 57]
FeBa4 Ga4 Se10 Cl2
tetragonal
I 4
a 8.578 c 15.717
band gap 1.88 eV
[ 32] [ 57]
CoBa4 Ga4 Se10 Cl2
tetragonal
I 4
a 8.572 c 15.716
band gap 2.02 eV
[ 32] [ 57]
Cu0.5 Ba4 Ga4.5 Se10 Cl2
tetragonal
I 4
a 8.559 c 15.778
band gap 2.6 eV; SHG=39×AgGaS2
[ 32] [ 57]
CuBa4 Ga5 Se12
P 421 c
a = 13.598, c = 6.527, Z = 2
band gap 1.45 eV; SHG=3×AgGaS2
[ 32] [ 58]
ZnBa4 Ga4 Se10 Cl2
tetragonal
I 4
a 8.561 c 15.757
band gap 3.08 eV; SHG=59×AgGaS2
[ 32] [ 57]
Ba10 Zn7 Ga6 Se26
tetragonal
I 4 2m
a 11.2907 c 21.760 Z=2
2774.0
5.151
yellow
[ 59]
Ba4 Ga4 GeSe12
1848.35
tetragonal
P 4 21 c
a=13.5468 c=6.4915 Z=2
1191.29
5.153
orange yellow; band gap 2.18 eV
[ 47] [ 60]
BaGa2 GeSe6
R 3
[ 61]
RbBa3 Ga5 Se10 Cl2
tetragonal
I 4
a 8.6629 c 15.6379
band gap 2.05 eV; SHG=20×AgGaS2
[ 32] [ 56]
Ba2 GaYSe5
triclinic
P 1
a 7.2876Å b 8.6597Å c 9.3876Å, α 103.51° β 103.04° γ 107.43°
[ 62]
Ba4 AgGaSe6
1199.44
orthorhombic
Pnma
a=9.1006 b=4.472 c=17.7572 Z=2
722.71
5.512
dark red; air stable; band gap 2.50
[ 63]
Ba4 AgGa5 Se12
1953.35
tetragonal
P 4 21 c
a 13.6544 c 6.5215 Z=2
1215.9
5.335
yellow
[ 53]
Ba7 AgGa5 Se15
trigonal
P 31c
a 10.0467 c 18.689
band gap 2.60 eV
[ 64]
CdBa4 Ga4 Se10 Cl2
tetragonal
I 4
a 8.611 c 15.805
band gap 3.05 eV; SHG=52×AgGaS2
[ 32] [ 57]
Ba5 CdGa6 Se12
2401.82
orthorhombic
Ama 2
a=24.2458 b=19.1582 c=6.6208 Z=4
3075.4
5.187
yellow; air stable; band gap 2.60 eV; mp=866 °C
[ 47] [ 65]
BaGa2 SnSe6
869.23
trigonal
R 3
a = 10.145, c = 9.249 Z = 3
824.4
5.253
red; SHG 5.2×AgGaS2
[ 66]
Ba4 Ga4 SnSe12
1894.45
tetragonal
P 4 21 c
a 13.607 c 6.509 Z=2
1205.2
5.221
red; band gap 2.16 eV
[ 67]
Ba6 Ga2 SnSe11
1950.73
monoclinic
P 21 /c
a 18.715 b 7.109 c 19.165, β 103.29°
2481.5
5.221
red; bad gap 1.99 eV
[ 67]
Ba2 AsGaSe5
814.12
orthorhombic
Pnma
a = 12.632, b = 8.973, c = 9.203, Z = 4
1043.1
5.184
black
[ 68]
CsBa3 Ga5 Se10 Cl2
tetragonal
I 4
a 8.734 c 15.697
1197.6
band gap 2.08 eV; SHG=100×AgGaS2
[ 32] [ 56]
NaLaGa4 Se8
orthorhombic
Fddd
a 21.1979 b 21.1625 c 12.7216
[ 69]
La3 MnGaSe7
1094.11
hexagonal
P 63
a 10.5894 c 6.3458 Z=2
616.25
5.896
black
[ 70]
La3 FeGaSe7
hexagonal
P 63
a=10.5042 c=6.3496
606.74
[ 71]
La3 CoGaSe7
hexagonal
P 63
a=10.5104 c=6.3708
609.48
[ 71]
La3 NiGaSe7
hexagonal
P 63
a=10.4826 c=6.3964
608.71
[ 71]
La3 CuGaSe7
1102.71
hexagonal
P 63
a=10.626 c=6.392 Z=2
626.0
5.859
[ 47]
La3 ZnGaSe7
1104.54
hexagonal
P 63
a=10.630 c=6.374 Z=2
623.7
5.881
[ 47]
La3 Ag0.6 GaSe7
hexagonal
P 63
a =10.6, c =6.4 Z=2
[ 72]
La3 CdGaSe7
hexagonal
P 63
a=10.606 c=6.380 Z=2
621.5
6.153
[ 47]
Ba2 GaLaSe5
orthorhombic
Pnma
a 12.5049 b 9.6288 c 8.7355
[ 73]
NaCeGa4 Se8
orthorhombic
Fddd
a 21.141 b 21.138 c 12.712
[ 69]
Ce3 CuGaSe7
1106.34
hexagonal
P 63
a=10.6007 c=6.3775 Z=2
620.65
5.920
[ 47]
Ba2 GaCeSe5
orthorhombic
Fddd
a 12.494 b 9.599 c 8.738
[ 73]
Pr3 CuGaSe7
1108.71
hexagonal
P 63
a=10.4181 c=6.3743 Z=2
599.16
6.146
[ 47]
NaNdGa4 Se8
orthorhombic
Fddd
a 21.015 b 21.045 c 12.709
[ 69]
Nd3 FeGaSe7
hexagonal
P 63
a 10.2453 c 6.4076 Z=2
582.47
[ 74]
Nd3 CoGaSe7
hexagonal
P 63
a=10.2296 c=6.4272
582.47
[ 71]
Nd3 NiGaSe7
hexagonal
P 63
a=10.2117 c=6.4066
578.57
[ 71]
Nd3 CuGaSe7
1118.70
hexagonal
P 63
a=10.3426 c=6.3869 Z=2
591.7
6.279
[ 47]
Ba2 GaNdSe5
triclinic
P 1
a 7.29Å b 8.7914Å c 9.47Å, α 103.77° β 102.91° γ 107.72°
[ 62]
SmGa2 Se4
rhombic
a=21.34, b=21.60, c=12.74
[ 75]
Ba2 GaSmSe5
triclinic
P 1
a 7.3017Å b 8.7635Å c 9.4554Å, α 103.672° β 102.963° γ 107.637°
[ 62]
Gd3 FeGaSe7
hexagonal
P 63
a 10.0762 c 6.4265 Z=2
[ 74]
Ba2 GaGdSe5
triclinic
P 1
a 7.2834Å b 8.7062Å c 9.4079Å, α 103.65° β 103.02° γ 107.52°
[ 62]
Dy3 FeGaSe7
hexagonal
P 63
a 9.9956Å c 6.398 Z=2
[ 74]
Ba2 GaDySe5
triclinic
P 1
a 7.2772Å b 8.6543Å c 9.3792Å, α 103.53° β 103.07° γ 107.43°
[ 62]
Ba2 GaErErSe5
triclinic
P 1
a 7.2721Å b 8.6258Å c 9.3621Å, α 103.41° β 103.13° γ 107.39°
[ 62]
Ba2 GaTbSe5
triclinic
P 1
a 7.309 b 8.719 c 9.433, α 103.548° β 103.039° γ 107.520°
[ 73]
Ba2 GaHoSe5
triclinic
P 1
a 7.2964 b 8.670 c 9.406, α 103.482° β 103.049° γ 107.423°
[ 73]
Ba2 GaTmSe5
triclinic
P 1
a 7.2884 b 8.6376 c 9.3823, α 103.429° β 103.075° γ 107.360°
[ 73]
Ba2 GaYbSe5
triclinic
P 1
a 7.2864 b 8.6257 c 9.3716, α 103.4154° β 103.0369° γ 107.3396°
[ 73]
Ba2 GaLuSe5
triclinic
P 1
a 7.2829 b 8.6120 c 9.368, α 103.362° β 103.051° γ 107.308°
[ 73]
HgGa2 Se4
[ 76]
KHg4 Ga5 Se12
2137.58
trigonal
R 3
a 14.3203 b 14.3203 c 9.7057 Z=3
1723.7
6.178
band gap 1.61 eV; SHG=20×AgGaS2
[ 32] [ 77] [ 78]
TlGaSe2
432.01
monoclinic
C 2/c
a=10.760 b=10.762 c=15.626 β =100.19 Z=16
1780.8
6.445
black; layers of supertetrahedra; mp 804 °C; band gap 1.87 eV
[ 79]
TlGaGeSe4
662.52
orthorhombic
Pnma
a=17.4742 b=7.4105 c=11.9406 Z=8
1546.22
5.692
[ 24]
Tl2 Ga2 GeSe6
tetragonal
I 4/mmc
a=8.0770 c=6.2572 Z=4
[ 80]
Tl0.8 Ga0.8 Ge1.2 Se4 -mC 112
622.22
monoclinic
C 2/c
a=13.5831 b=7.4015 c=30.7410 β =96.066 Z=16
3073.3
5.379
red
[ 24]
TlGaSnSe4 -mP 56
701.04
monoclinic
P 21 /c
a=7.501 b=12.175 c=18.203 β =97.164 Z=8
1649.4
5.646
red
[ 24]
TlGaSnSe4 -cP 84
708.62
cubic
Pa 3
a=13.4755 Z=12
2447.0
5.770
red
[ 24]
Tl2 Ga2 SnSe6
tetragonal
I 4/mmc
a=8.095 c=6.402 Z=4
[ 80]
TlGaSn2 Se6
R 3
a=10.3289 c=9.4340
871.64
5.6301
dark grey in bulk; maroon powder
[ 81]
PbGa2 Se4
662.47
orthorhombic
Fddd
a =12.73 b=21.26 c=21.55 Z=32
5830
6.036
yellow to red; mp 780 °C; band gap 1.83 eV
[ 82] [ 83]
Pb0.72 Mn2.84 Ga2.95 Se8
hexagonal
P 6
a 17.550 c 3.8916
[ 84]
PbGa2 GeSe6
orthorhombic
Fdd 2
mp 720 °C biaxial (−)
[ 61]
Pb4 Ga4 GeSe12
tetragonal
P 4 21 c
a = 13.064 c = 6.310 Z=2
[ 85]
Ba2 GaBiSe5
orthorhombic
Pnma
a=12.691 b=9.190 c=9.245 Z=4
1078.2
5.841
yellow
[ 86]
References
^ a b c Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (2017-11-17). "Synthesis and Structural Characterization of the layered Selenogallate RbGaSe 2: Synthesis and Structural Characterization of the layered Selenogallate RbGaSe 2" . Zeitschrift für anorganische und allgemeine Chemie . 643 (21): 1589–1592. doi :10.1002/zaac.201700288 .
^ Friedrich, Daniel; Schlosser, Marc; Näther, Christian; Pfitzner, Arno (7 May 2018). "In Situ X-ray Diffraction Study of the Thermal Decomposition of Selenogallates Cs 2 [Ga 2 (Se 2 ) 2– x Se 2+ x ] ( x = 0, 1, 2)". Inorganic Chemistry . 57 (9): 5292–5298. doi :10.1021/acs.inorgchem.8b00324 . PMID 29667827 .
^ Luque, Antonio; Hegedus, Steven (2011-03-29). Handbook of Photovoltaic Science and Engineering . John Wiley & Sons. ISBN 978-0-470-97612-8 .
^ a b Peng, Jing; Liu, Xinyao; Wang, Jie; Zhang, Shaoqing; Xiao, Xiao; Xiong, Zhengbin; Zhang, Kuibao; Chen, Baojun; He, Zhiyu; Huang, Wei (2023-07-31). "Crystal Growth, Characterization, and Properties of Nonlinear Optical Crystals of Li x Ag 1– x GaSe 2 for Mid-Infrared Applications" . Inorganic Chemistry . 62 (30): 12067–12078. doi :10.1021/acs.inorgchem.3c01582 . ISSN 0020-1669 . PMID 37475677 . S2CID 259995617 .
^ a b c d Zhou, Jian; Zhang, Yong; Bian, Guo-Qing; Li, Chun-Yin; Chen, Xiao-Xia; Dai, Jie (2008-07-02). "Structural Study of Organic−Inorganic Hybrid Thiogallates and Selenidogallates in View of Effects of the Chelate Amines" . Crystal Growth & Design . 8 (7): 2235–2240. doi :10.1021/cg700821n . ISSN 1528-7483 .
^ a b c Zhou, Jian; Li, Chun-Ying; Zhang, Yong; Dai, Jie (2009-04-10). "Three 1-D selenidogallates [GaSe 2 − ] n , displaying conformational variations" . Journal of Coordination Chemistry . 62 (7): 1112–1120. doi :10.1080/00958970802468617 . ISSN 0095-8972 . S2CID 96560482 .
^ a b Xu, Chao; Zhang, Jing-Jing; Duan, Taike; Chen, Qun; Zhang, Qian-Feng (2011-09-01). "Solvothermal Syntheses and Crystal Structures of New One-dimensional Selenogallates [bappH 2 ][Ga 2 Se 4 ] (bapp = 1,4-Bis-(3-aminopropyl)piperazine) and [Mn(en) 3 ][Ga 2 Se 5 ] (en = Ethylenediamine)" . Zeitschrift für Naturforschung B . 66 (9): 877–881. doi :10.1515/znb-2011-0902 . ISSN 1865-7117 . S2CID 51747460 .
^ a b c d e Xiong, Wei-Wei; Li, Jian-Rong; Feng, Mei-Ling; Huang, Xiao-Ying (2011). "Solvothermal syntheses, crystal structures, and characterizations of a series of one-dimensional organic-containing gallium polyselenides" . CrystEngComm . 13 (20): 6206. doi :10.1039/c1ce05507k . ISSN 1466-8033 .
^ Fehlker, Andreas; Blachnik, Roger; Reuter, Hans (1999). "[Ga(en)3][Ga3Se7(en)] · H2O: Ein Galliumchalkogenid mit Ketten aus [Ga3Se6Se2/2(en)]3–-Bicyclen" . Zeitschrift für anorganische und allgemeine Chemie (in German). 625 (7): 1225–1228. doi :10.1002/(SICI)1521-3749(199907)625:7<1225::AID-ZAAC1225>3.0.CO;2-H . ISSN 1521-3749 .
^ a b Adhikary, Amit; Yaghoobnejad Asl, Hooman; Sandineni, Prashanth; Balijapelly, Srikanth; Mohapatra, Sudip; Khatua, Sajal; Konar, Sanjit; Gerasimchuk, Nikolay; Chernatynskiy, Aleksandr V.; Choudhury, Amitava (2020-07-14). "Unusual Atmospheric Water Trapping and Water Induced Reversible Restacking of 2D Gallium Sulfide Layers in NaGaS 2 Formed by Supertetrahedral Building Unit" . Chemistry of Materials . 32 (13): 5589–5603. doi :10.1021/acs.chemmater.0c00836 . ISSN 0897-4756 . S2CID 225832882 .
^ Xu, Qian-Ting; Han, Shan-Shan; Li, Jia-Nuo; Guo, Sheng-Ping (2022-04-11). "NaGa 3 Se 5 : An Infrared Nonlinear Optical Material with Balanced Performance Contributed by Complex {[Ga 3 Se 5 ] − } ∞ Anionic Network" . Inorganic Chemistry . 61 (14): 5479–5483. doi :10.1021/acs.inorgchem.2c00623 . ISSN 0020-1669 . PMID 35344370 . S2CID 247777531 .
^ Feng, Kai; Mei, Dajiang; Bai, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (August 2012). "Synthesis, structure, physical properties, and electronic structure of KGaSe2" . Solid State Sciences . 14 (8): 1152–1156. Bibcode :2012SSSci..14.1152F . doi :10.1016/j.solidstatesciences.2012.05.028 .
^ Zhou, Yazhou; Xing, Lingyi; Finkelstein, Gregory J.; Gui, Xin; Marshall, Madalynn G.; Dera, Przemyslaw; Jin, Rongying ; Xie, Weiwei (2018-11-19). "Cr 2.37 Ga 3 Se 8 : A Quasi-Two-Dimensional Magnetic Semiconductor" . Inorganic Chemistry . 57 (22): 14298–14303. doi :10.1021/acs.inorgchem.8b02384 . ISSN 0020-1669 . OSTI 1673400 . PMID 30345756 .
^ González, J.; Rico, R.; Calderón, E.; Quintero, M.; Morocoima, M. (1999). "Absorption Edge of MnGa2Se4 Single Crystals under Hydrostatic Pressure" . Physica Status Solidi B . 211 (1): 45–49. Bibcode :1999PSSBR.211...45G . doi :10.1002/(SICI)1521-3951(199901)211:1<45::AID-PSSB45>3.0.CO;2-8 . ISSN 1521-3951 .
^ Abrahams, S. C.; Bernstein, J. L. (August 1974). "Piezoelectric nonlinear optic CuGaSe 2 and CdGeAs 2 : Crystal structure, chalcopyrite microhardness, and sublattice distortion" . The Journal of Chemical Physics . 61 (3): 1140–1146. Bibcode :1974JChPh..61.1140A . doi :10.1063/1.1681987 . ISSN 0021-9606 .
^ a b Errandonea, D.; Kumar, Ravhi S.; Manjón, F. J.; Ursaki, V. V.; Tiginyanu, I. M. (2008-09-15). "High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4" . Journal of Applied Physics . 104 (6): 063524–063524–9. arXiv :0809.4620 . Bibcode :2008JAP...104f3524E . doi :10.1063/1.2981089 . ISSN 0021-8979 . S2CID 56222977 .
^ Chen, Ruijiao; Wu, Xiaowen; Su, Zhi (2018). "Structural insights into T 2 -cluster-containing chalcogenides with vertex-, edge- and face-sharing connection modes of NaQ 6 ligands: Na 3 ZnM III Q 4 (M III = In, Ga; Q = S, Se)" . Dalton Transactions . 47 (43): 15538–15544. doi :10.1039/C8DT03281E . ISSN 1477-9226 . PMID 30345442 .
^ Abudurusuli, Ailijiang; Wu, Kui; Rouzhahong, Yilimiranmu; Yang, Zhihua; Pan, Shilie (2018). "Na 6 Zn 3 MIII2Q 9 (M III = Ga, In; Q = S, Se): four new supertetrahedron-layered chalcogenides with unprecedented vertex-sharing T 3 -clusters and desirable photoluminescence performances" . Inorganic Chemistry Frontiers . 5 (6): 1415–1422. doi :10.1039/C8QI00182K . ISSN 2052-1553 .
^ a b c Chen, Man-Man; Zhou, Sheng-Hua; Wei, Wenbo; Wu, Xin-Tao; Lin, Hua; Zhu, Qi-Long (2021-06-17). "AZn 4 Ga 5 Se 12 (A = K, Rb, or Cs): Infrared Nonlinear Optical Materials with Simultaneous Large Second Harmonic Generation Responses and High Laser-Induced Damage Thresholds". Inorganic Chemistry . 60 (13): 10038–10046. doi :10.1021/acs.inorgchem.1c01359 . PMID 34134479 . S2CID 235460337 .
^ Yelisseyev, Alexander P.; Isaenko, Ludmila I.; Krinitsin, Pavel; Liang, Fei; Goloshumova, Alina A.; Naumov, Dmitry Yu.; Lin, Zheshuai (2016-09-06). "Crystal Growth, Structure, and Optical Properties of LiGaGe 2 Se 6" . Inorganic Chemistry . 55 (17): 8672–8680. doi :10.1021/acs.inorgchem.6b01225 . ISSN 0020-1669 . PMID 27529433 .
^ Mei, Dajiang; Yin, Wenlong; Feng, Kai; Lin, Zheshuai; Bai, Lei; Yao, Jiyong; Wu, Yicheng (2012-01-16). "LiGaGe 2 Se 6 : A New IR Nonlinear Optical Material with Low Melting Point" . Inorganic Chemistry . 51 (2): 1035–1040. doi :10.1021/ic202202j . ISSN 0020-1669 . PMID 22221169 .
^ Isaenko, L.I.; Yelisseyev, A.P.; Lobanov, S.I.; Krinitsin, P.G.; Molokeev, M.S. (September 2015). "Structure and optical properties of Li2Ga2GeS6 nonlinear crystal" . Optical Materials . 47 : 413–419. Bibcode :2015OptMa..47..413I . doi :10.1016/j.optmat.2015.06.014 .
^ Li, Xiaoshuang; Li, Chao; Gong, Pifu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2016). "Syntheses, crystal structures and physical properties of three new chalcogenides: NaGaGe 3 Se 8 , K 3 Ga 3 Ge 7 S 20 , and K 3 Ga 3 Ge 7 Se 20" . Dalton Transactions . 45 (2): 532–538. doi :10.1039/C5DT03682H . ISSN 1477-9226 . PMID 26599138 .
^ a b c d e f g h i Friedrich, Daniel; Byun, Hye Ryung; Hao, Shiqiang; Patel, Shane; Wolverton, Chris; Jang, Joon Ik; Kanatzidis, Mercouri G. (2020-10-14). "Layered and Cubic Semiconductors A Ga M ′ Q 4 ( A + = K + , Rb + , Cs + , Tl + ; M ′ 4+ = Ge 4+ , Sn 4+ ; Q 2– = S 2– , Se 2– ) and High Third-Harmonic Generation" . Journal of the American Chemical Society . 142 (41): 17730–17742. doi :10.1021/jacs.0c08638 . ISSN 0002-7863 . PMID 32933252 . S2CID 221748402 .
^ a b c d Larsen, Jes K.; Donzel-Gargand, Olivier; Sopiha, Kostiantyn V.; Keller, Jan; Lindgren, Kristina; Platzer-Björkman, Charlotte; Edoff, Marika (2021-02-22). "Investigation of AgGaSe 2 as a Wide Gap Solar Cell Absorber" . ACS Applied Energy Materials . 4 (2): 1805–1814. doi :10.1021/acsaem.0c02909 . ISSN 2574-0962 . S2CID 234068019 .
^ Li, Jun; Li, Jia-Nuo; Hu, Li-Yun; Ni, Jun-Jie; Yao, Wen-Dong; Zhou, Wenfeng; Liu, Wenlong; Guo, Sheng-Ping (2024-03-22). "Polysubstitution Induced Centrosymmetric-to-Noncentrosymmetric Structural Transformation and Nonlinear-Optical Behavior: The Case of Na 0.45 Ag 0.55 Ga 3 Se 5" . Inorganic Chemistry . 63 (14): 6116–6121. doi :10.1021/acs.inorgchem.4c00785 . ISSN 0020-1669 . PMID 38518373 .
^ Li, Jia-Nuo; Yao, Wen-Dong; Li, Xiao-Hui; Liu, Wenlong; Xue, Huai-Guo; Guo, Sheng-Ping (2021). "A novel promising infrared nonlinear optical selenide KAg 3 Ga 8 Se 14 designed from benchmark AgGaQ 2 (Q = S, Se)" . Chemical Communications . 57 (9): 1109–1112. doi :10.1039/D0CC07396B . ISSN 1359-7345 . PMID 33410852 . S2CID 230546711 .
^ Ni, Youbao; Hu, Qianqian; Wu, Haixin; Han, Weimin; Yu, Xuezhou; Mao, Mingsheng (2021-06-10). "The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe)" . Crystals . 11 (6): 661. doi :10.3390/cryst11060661 . ISSN 2073-4352 .
^ Kim, Chang-Dae; Cho, Tong-San; Kim, Jae-Kuen; Kim, Wha-Tek; Park, Hong-Lee (1987-12-15). "Spin-orbit coupling effects in CdGa 2 Se 4 : Co 2 + single crystals" . Physical Review B . 36 (17): 9283–9285. Bibcode :1987PhRvB..36.9283K . doi :10.1103/PhysRevB.36.9283 . ISSN 0163-1829 . PMID 9942799 .
^ a b c Grzechnik, A.; Ursaki, V.V.; Syassen, K.; Loa, I.; Tiginyanu, I.M.; Hanfland, M. (August 2001). "Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4" . Journal of Solid State Chemistry . 160 (1): 205–211. Bibcode :2001JSSCh.160..205G . doi :10.1006/jssc.2001.9224 .
^ a b c Lin, Hua; Chen, Ling; Zhou, Liu-Jiang; Wu, Li-Ming (2013-08-28). "Functionalization Based on the Substitutional Flexibility: Strong Middle IR Nonlinear Optical Selenides AX II 4 X III 5 Se 12" . Journal of the American Chemical Society . 135 (34): 12914–12921. doi :10.1021/ja4074084 . ISSN 0002-7863 . PMID 23902474 .
^ a b c d e f g h i j k l m n Abudurusuli, Ailijiang; Li, Junjie; Tong, Tinghao; Yang, Zhihua; Pan, Shilie (2020-04-20). "LiBa 4 Ga 5 Q 12 (Q = S, Se): Noncentrosymmetric Metal Chalcogenides with a Cesium Chloride Topological Structure Displaying a Remarkable Laser Damage Threshold" . Inorganic Chemistry . 59 (8): 5674–5682. doi :10.1021/acs.inorgchem.0c00431 . ISSN 0020-1669 . PMID 32248682 . S2CID 214811024 .
^ Deiseroth, H.-J.; Müller, D.; Hahn, H. (June 1985). "Strukturuntersuchungen an InGaSe2 und InGaTe2" . Zeitschrift für anorganische und allgemeine Chemie (in German). 525 (6): 163–172. doi :10.1002/zaac.19855250619 . ISSN 0044-2313 .
^ Luo, Zhong-Zhen; Lin, Chen-Sheng; Cui, Hong-Hua; Zhang, Wei-Long; Zhang, Hao; He, Zhang-Zhen; Cheng, Wen-Dan (2014-04-22). "SHG Materials SnGa 4 Q 7 (Q = S, Se) Appearing with Large Conversion Efficiencies, High Damage Thresholds, and Wide Transparencies in the Mid-Infrared Region" . Chemistry of Materials . 26 (8): 2743–2749. doi :10.1021/cm5006955 . ISSN 0897-4756 .
^ Lin, Hua; Chen, Hong; Zheng, Yu-Jun; Yu, Ju-Song; Wu, Xin-Tao; Wu, Li-Ming (2017). "Two excellent phase-matchable infrared nonlinear optical materials based on 3D diamond-like frameworks: RbGaSn 2 Se 6 and RbInSn 2 Se 6" . Dalton Transactions . 46 (24): 7714–7721. doi :10.1039/C7DT01384A . ISSN 1477-9226 . PMID 28537606 .
^ a b Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (2016-07-06). "Synthesis, Crystal Structure, and Physical Properties of Two Polymorphs of CsGaSe 2 , and High-Temperature X-ray Diffraction Study of the Phase Transition Kinetics" . Crystal Growth & Design . 16 (7): 3983–3992. doi :10.1021/acs.cgd.6b00532 . ISSN 1528-7483 .
^ Do, Junghwan; Kanatzidis, Mercouri G. (April 2003). "The One-dimensional Polyselenide Compound CsGaSe3" . Zeitschrift für anorganische und allgemeine Chemie (in German). 629 (4): 621–624. doi :10.1002/zaac.200390105 . ISSN 0044-2313 .
^ Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (April 2014). "Synthesis and Structural Characterization of Cs 2 Ga 2 Se 5: Synthesis and Structural Characterization of Cs 2 Ga 2 Se 5" (PDF) . Zeitschrift für anorganische und allgemeine Chemie . 640 (5): 826–829. doi :10.1002/zaac.201400046 .
^ Friedrich, Daniel; Greim, Dominik; Schlosser, Marc; Siegel, Renée; Senker, Jürgen; Pfitzner, Arno (2018-12-03). "Synthese und Charakterisierung von Cs 4 Ga 6 Q 11 ( Q =S, Se) – Chalkogenogallate mit außergewöhnlichen polymeren Anionen" . Angewandte Chemie . 130 (49): 16442–16447. Bibcode :2018AngCh.13016442F . doi :10.1002/ange.201805239 . ISSN 0044-8249 . S2CID 105570704 .
^ Deiseroth, Hans-Jörg; Fu-Son, Han (1983-02-01). "Cs 6 Ga 2 Se 6 , ein ternäres Selenogallat(III) mit isolierten [Ga 2 Se 6 ] 6- -Ionen/Cs 6 Ga 2 Se 6 , a Ternary Selenogallate(III) with Isolated [Ga 2 Se 6 ] 6- Ions" . Zeitschrift für Naturforschung B . 38 (2): 181–182. doi :10.1515/znb-1983-0212 . ISSN 1865-7117 . S2CID 96891752 .
^ a b Deiseroth, H. J. (1984-08-01). "Ungewöhnliche lineare, oligomere Anionen [Ga n Se 2n+2 ] (n + 4) - (n =2,4,6) in festen Selenogallaten des Cäsiums" . Zeitschrift für Kristallographie - Crystalline Materials . 166 (1–4): 283–296. doi :10.1524/zkri.1984.166.14.283 . ISSN 2196-7105 . S2CID 93996138 .
^ Lin, Hua; Chen, Hong; Lin, Zi-Xiong; Zhao, Hua-Jun; Liu, Peng-Fei; Yu, Ju-Song; Chen, Ling (February 2016). "(Cs 6 Cl) 6 Cs 3 [Ga 53 Se 96 ]: A Unique Long Period-Stacking Structure of Layers Made from Ga 2 Se 6 Dimers via Cis or Trans Intralayer Linking" . Inorganic Chemistry . 55 (3): 1014–1016. doi :10.1021/acs.inorgchem.5b02846 . ISSN 0020-1669 . PMID 26792549 .
^ Ma, Ni; Xiong, Lin; Chen, Ling; Wu, Li-Ming (December 2019). "Vibration uncoupling of germanium with different valence states lowers thermal conductivity of Cs2Ge3Ga6Se14" . Science China Materials . 62 (12): 1788–1797. doi :10.1007/s40843-019-1192-y . ISSN 2095-8226 . S2CID 204962439 .
^ Mei, Dajiang; Yin, Wenlong; Feng, Kai; Bai, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (February 2012). "Synthesis, structure, and electronic structure of CsAgGa2Se4" . Journal of Solid State Chemistry . 186 : 54–57. Bibcode :2012JSSCh.186...54M . doi :10.1016/j.jssc.2011.11.014 .
^ Zhai, Naixia; Li, Chao; Xu, Bo; Bai, Lei; Yao, Jiyong; Zhang, Guochun; Hu, Zhanggui; Wu, Yicheng (2017-02-23). "Temperature-Dependent Sellmeier Equations of IR Nonlinear Optical Crystal BaGa4Se7" . Crystals . 7 (3): 62. doi :10.3390/cryst7030062 . ISSN 2073-4352 .
^ Yao, Jiyong; Mei, Dajiang; Bai, Lei; Lin, Zheshuai; Yin, Wenlong; Fu, Peizhen; Wu, Yicheng (2010-10-18). "BaGa 4 Se 7 : A New Congruent-Melting IR Nonlinear Optical Material" . Inorganic Chemistry . 49 (20): 9212–9216. doi :10.1021/ic1006742 . ISSN 0020-1669 . PMID 20863100 .
^ a b c d e f g h i Iyer, Abishek K (2018). "Structural diversity and optical properties of ternary and quaternary chalcogenides" . doi :10.7939/R33N20W55 .
^ Yin, Wenlong; Iyer, Abishek K.; Lin, Xinsong; Mar, Arthur (May 2016). "Ba4Ga2Se8: A ternary selenide containing chains and discrete S e 2 2 − units" . Journal of Solid State Chemistry . 237 : 144–149. Bibcode :2016JSSCh.237..144Y . doi :10.1016/j.jssc.2016.02.014 .
^ Mei, Dajiang; Yin, Wenlong; Lin, Zheshuai; He, Ran; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (February 2011). "Syntheses and characterization of two new selenides Ba5Al2Se8 and Ba5Ga2Se8" . Journal of Alloys and Compounds . 509 (6): 2981–2985. doi :10.1016/j.jallcom.2010.11.178 .
^ Yin, Wenlong; Mei, Dajiang; Feng, Kai; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2011). "Ba5Ga4Se10: a new selenidogallate containing the novel [Ga4Se10]10− anionic cluster with Ga in a mixed-valence state" . Dalton Transactions . 40 (36): 9159–9162. doi :10.1039/c1dt10748h . ISSN 1477-9226 . PMID 21822514 .
^ Feng, Kai; Yin, Wenlong; Lin, Zuohong; Yao, Jiyong; Wu, Yicheng (2013-10-07). "Five New Chalcohalides, Ba 3 GaS 4 X (X = Cl, Br), Ba 3 MSe 4 Cl (M = Ga, In), and Ba 7 In 2 Se 6 F 8 : Syntheses, Crystal Structures, and Optical Properties" . Inorganic Chemistry . 52 (19): 11503–11508. doi :10.1021/ic401820a . ISSN 0020-1669 . PMID 24024885 .
^ Yin, Wenlong; Iyer, Abishek K.; Xing, Wenhao; Kang, Bin; Mar, Arthur (April 2020). "Quaternary chalcogenide halides Ba3GaSe4Br and Ba3InSe4Br" . Journal of Solid State Chemistry . 284 : 121189. Bibcode :2020JSSCh.28421189Y . doi :10.1016/j.jssc.2020.121189 . S2CID 213719661 .
^ a b Yin, Wenlong; Feng, Kai; Mei, Dajiang; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2012). "Ba2AgInS4 and Ba4MGa5Se12 (M = Ag, Li): syntheses, structures, and optical properties" . Dalton Transactions . 41 (8): 2272–2276. doi :10.1039/c2dt11895e . ISSN 1477-9226 . PMID 22214992 .
^ Abudurusuli, Ailijiang; Wu, Kui; Rouzhahong, Yilimiranmu; Yang, Zhihua; Pan, Shilie (2018). "NaBaM III Q 3 (M III = Al, Ga; Q = S, Se): first quaternary chalcogenides with isolated edge-sharing (MIII2Q 6 ) 6− dimers" . Dalton Transactions . 47 (45): 16044–16047. doi :10.1039/C8DT04048F . ISSN 1477-9226 . PMID 30393800 .
^ Li, Ya-Nan; Xue, Huaiguo; Guo, Sheng-Ping (2020-03-16). "(Na 0.60 Ba 0.70 )Ga 2 Se 4 : An Infrared Nonlinear Optical Crystal Designed using AgGaSe 2 as the Template" . Inorganic Chemistry . 59 (6): 3546–3550. doi :10.1021/acs.inorgchem.0c00196 . ISSN 0020-1669 . PMID 32125150 . S2CID 211833495 .
^ a b c Yu, Peng; Zhou, Liu-Jiang; Chen, Ling (February 2012). "Noncentrosymmetric Inorganic Open-Framework Chalcohalides with Strong Middle IR SHG and Red Emission: Ba 3 AGa 5 Se 10 Cl 2 (A = Cs, Rb, K)" . Journal of the American Chemical Society . 134 (4): 2227–2235. doi :10.1021/ja209711x . ISSN 0002-7863 . PMID 22239154 .
^ a b c d e f Li, Yan-Yan; Liu, Peng-Fei; Hu, Lei; Chen, Ling; Lin, Hua; Zhou, Liu-Jiang; Wu, Li-Ming (July 2015). "Strong IR NLO Material Ba 4 MGa 4 Se 10 Cl 2 : Highly Improved Laser Damage Threshold via Dual Ion Substitution Synergy" . Advanced Optical Materials . 3 (7): 957–966. doi :10.1002/adom.201500038 . S2CID 94065731 .
^ Kuo, Shu-Ming; Chang, Yu-Ming; Chung, In; Jang, Joon-Ik; Her, Bo-Hsian; Yang, Siao-Han; Ketterson, John B.; Kanatzidis, Mercouri G.; Hsu, Kuei-Fang (2013-06-25). "New Metal Chalcogenides Ba 4 CuGa 5 Q 12 (Q = S, Se) Displaying Strong Infrared Nonlinear Optical Response" . Chemistry of Materials . 25 (12): 2427–2433. doi :10.1021/cm400311v . ISSN 0897-4756 .
^ Li, Yan-Yan; Wang, Hui; Sun, Bo-Wen; Ruan, Qin-Qin; Geng, Yan-Ling; Liu, Peng-Fei; Wang, Lei; Wu, Li-Ming (2019-02-06). "Ba 10 Zn 7 M 6 Q 26 : Two New Mid-infrared Nonlinear Optical Crystals with T2 Supertetrahedron 3D Framework" . Crystal Growth & Design . 19 (2): 1190–1197. doi :10.1021/acs.cgd.8b01644 . ISSN 1528-7483 . S2CID 104303095 .
^ Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Lin, Xinsong; Yao, Jiyong; Mar, Arthur (September 2016). "Noncentrosymmetric selenide Ba4Ga4GeSe12: Synthesis, structure, and optical properties" . Journal of Solid State Chemistry . 241 : 131–136. Bibcode :2016JSSCh.241..131Y . doi :10.1016/j.jssc.2016.06.004 .
^ a b Badikov, Valeriy V.; Badikov, Dmitrii V.; Wang, Li; Shevyrdyaeva, Galina S.; Panyutin, Vladimir L.; Fintisova, Anna A.; Sheina, Svetlana G.; Petrov, Valentin (2019-08-07). "Crystal Growth and Characterization of a New Quaternary Chalcogenide Nonlinear Crystal for the Mid-Infrared: PbGa 2 GeSe 6" . Crystal Growth & Design . 19 (8): 4224–4228. doi :10.1021/acs.cgd.9b00118 . ISSN 1528-7483 . S2CID 198354895 .
^ a b c d e f Yin, Wenlong; Feng, Kai; Wang, Wendong; Shi, Youguo; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (2012-06-18). "Syntheses, Structures, Optical and Magnetic Properties of Ba 2 M Ln Se 5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er)" . Inorganic Chemistry . 51 (12): 6860–6867. doi :10.1021/ic300604a . ISSN 0020-1669 . PMID 22671989 .
^ Lei, Xiao-Wu; Yang, Min; Xia, Sheng-Qing; Liu, Xiao-Cun; Pan, Ming-Yan; Li, Xin; Tao, Xu-Tang (April 2014). "Synthesis, Structure and Bonding, Optical Properties of Ba 4 MTrQ 6 (M=Cu, Ag; Tr=Ga, In; Q=S, Se)" . Chemistry: An Asian Journal . 9 (4): 1123–1131. doi :10.1002/asia.201301495 . PMID 24519897 .
^ Yin, Wenlong; He, Ran; Feng, Kai; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (July 2013). "Synthesis, structure, optical property, and electronic structure of Ba7AgGa5Se15" . Journal of Alloys and Compounds . 565 : 115–119. doi :10.1016/j.jallcom.2013.02.180 .
^ Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Yao, Jiyong; Mar, Arthur (2017). "Ba 5 CdGa 6 Se 15 , a congruently-melting infrared nonlinear optical material with strong SHG response" . Journal of Materials Chemistry C . 5 (5): 1057–1063. doi :10.1039/C6TC05111A . ISSN 2050-7526 .
^ Li, Xiaoshuang; Li, Chao; Gong, Pifu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2015). "BaGa 2 SnSe 6 : a new phase-matchable IR nonlinear optical material with strong second harmonic generation response" . Journal of Materials Chemistry C . 3 (42): 10998–11004. doi :10.1039/C5TC02337H . ISSN 2050-7526 .
^ a b Yin, Wenlong; Lin, Zuohong; Kang, Lei; Kang, Bin; Deng, Jianguo; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2015). "Syntheses, structures, and optical properties of Ba 4 Ga 4 SnSe 12 and Ba 6 Ga 2 SnSe 11" . Dalton Transactions . 44 (5): 2259–2266. doi :10.1039/C4DT02244K . ISSN 1477-9226 . PMID 25523931 .
^ Li, Chao; Li, Xiaoshuang; Huang, Hongwei; Yao, Jiyong; Wu, Yicheng (2015-10-19). "Ba 2 AsGaSe 5 : A New Quaternary Selenide with the Novel [AsGaSe 5 ] 4– Cluster and Interesting Photocatalytic Properties" . Inorganic Chemistry . 54 (20): 9785–9789. doi :10.1021/acs.inorgchem.5b01501 . ISSN 0020-1669 . PMID 26418301 .
^ a b c Choudhury, Amitava; Dorhout, Peter K. (2008-05-01). "Synthesis, Structure, and Optical Properties of the Quaternary Seleno-gallates Na Ln Ga 4 Se 8 ( Ln = La, Ce, Nd) and Their Comparison with the Isostructural Thio-gallates" . Inorganic Chemistry . 47 (9): 3603–3609. doi :10.1021/ic701986j . ISSN 0020-1669 . PMID 18345598 .
^ He, Jianqiao; Wang, Zhe; Zhang, Xian; Cheng, Ye; Gong, Yu; Lai, Xiaofang; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang (2015). "Synthesis, structure, magnetic and photoelectric properties of Ln 3 M 0.5 M′Se 7 (Ln = La, Ce, Sm; M = Fe, Mn; M′ = Si, Ge) and La 3 MnGaSe 7" . RSC Advances . 5 (65): 52629–52635. Bibcode :2015RSCAd...552629H . doi :10.1039/C5RA05629B . ISSN 2046-2069 .
^ a b c d e Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur (February 2014). "Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se)" . Journal of Solid State Chemistry . 210 (1): 79–88. Bibcode :2014JSSCh.210...79R . doi :10.1016/j.jssc.2013.11.003 .
^ Iyer, Abishek K.; Yin, Wenlong; Rudyk, Brent W.; Lin, Xinsong; Nilges, Tom; Mar, Arthur (November 2016). "Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch=S, Se), and La3MGaSe7 (M=Zn, Cd)" . Journal of Solid State Chemistry . 243 : 221–231. Bibcode :2016JSSCh.243..221I . doi :10.1016/j.jssc.2016.08.031 .
^ a b c d e f g Yin, Wenlong; Zhang, Dong; Zhou, Molin; Iyer, Abishek K.; Pöhls, Jan-Hendrik; Yao, Jiyong; Mar, Arthur (September 2018). "Quaternary rare-earth selenides Ba2REGaSe5 and Ba2REInSe5" . Journal of Solid State Chemistry . 265 : 167–175. Bibcode :2018JSSCh.265..167Y . doi :10.1016/j.jssc.2018.05.041 . S2CID 103520080 .
^ a b c Yin, Wenlong; Wang, Wendong; Kang, Lei; Lin, Zheshuai; Feng, Kai; Shi, Youguo; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (June 2013). "Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides" . Journal of Solid State Chemistry . 202 : 269–275. Bibcode :2013JSSCh.202..269Y . doi :10.1016/j.jssc.2013.03.029 .
^ Alieva, O. A.; Aliev, O. M.; Rustamov, P. G. (1987). "SmSe-Ga2Se3 system" . Zhurnal Neorganicheskoj Khimii (in Russian). 32 (1): 252–254. ISSN 0044-457X .
^ Gomis, O.; Vilaplana, R.; Manjón, F. J.; Santamaría-Pérez, D.; Errandonea, D.; Pérez-González, E.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A.; Tiginyanu, I. M.; Ursaki, V. V. (2013-02-21). "High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa 2 Se 4" . Journal of Applied Physics . 113 (7): 073510–073510–10. Bibcode :2013JAP...113g3510G . doi :10.1063/1.4792495 . hdl :10251/35871 . ISSN 0021-8979 .
^ Zhou, Molin; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian (2017-09-26). "Hg-Based Infrared Nonlinear Optical Material KHg 4 Ga 5 Se 12 Exhibits Good Phase-Matchability and Exceptional Second Harmonic Generation Response" . Chemistry of Materials . 29 (18): 7993–8002. doi :10.1021/acs.chemmater.7b03143 . ISSN 0897-4756 .
^
^ Makhnovets, G.; Myronchuk, G.; Piskach, L.; Parasyuk, O.; Kityk, I.V.; Piasecki, M. (November 2018). "Phase diagram and specific band gap features of novel TlGaSe2: Zn+2(Cd+2, Hg+2) crystals" . Journal of Alloys and Compounds . 768 : 667–675. doi :10.1016/j.jallcom.2018.07.282 . S2CID 105481044 .
^ a b Babizhetskyy, Volodymyr; Levytskyy, Volodymyr; Smetana, Volodymyr; Wilk-Kozubek, Magdalena; Tsisar, Oksana; Piskach, Lyudmyla; Parasyuk, Oleg; Mudring, Anja-Verena (2020-02-25). "New cation-disordered quaternary selenides Tl 2 Ga 2 Tt Se 6 ( Tt =Ge, Sn)" . Zeitschrift für Naturforschung B . 75 (1–2): 135–142. doi :10.1515/znb-2019-0169 . ISSN 1865-7117 . S2CID 211229264 .
^ Parasyuk, Oleh; Babizhetskyy, Volodymyr; Khyzhun, Oleg; Levytskyy, Volodymyr; Kityk, Iwan; Myronchuk, Galyna; Tsisar, Oksana; Piskach, Lyudmyla; Jedryka, Jaroslaw; Maciag, Artur; Piasecki, Michal (2017-11-07). "Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators" . Crystals . 7 (11): 341. doi :10.3390/cryst7110341 . ISSN 2073-4352 .
^ Bletskan, D. I.; Frolov, V. V.; Kabatsii, V. M.; Kranichets, M.; Gule, E. G. (2006). "Photoconductivity and photoluminescence of PbGa2Se4crystals" (PDF) . Chalcogenide Letters . 3 (12). ISSN 1584-8663 .
^ Wu, Kui; Pan, Shilie; Wu, Hongping; Yang, Zhihua (February 2015). "Synthesis, structures, optical properties and electronic structures of PbGa2Q4 (Q=S, Se) crystals" . Journal of Molecular Structure . 1082 : 174–179. Bibcode :2015JMoSt1082..174W . doi :10.1016/j.molstruc.2014.11.019 .
^ Zhou, Molin; Jiang, Xingxing; Guo, Yangwu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2017-07-17). "Pb 0.65 Mn 2.85 Ga 3 S 8 and Pb 0.72 Mn 2.84 Ga 2.95 Se 8 : Two Quaternary Metal Chalcognides with Open-Tunnel-Framework Structures Displaying Intense Second Harmonic Generation Responses and Interesting Magnetic Properties" . Inorganic Chemistry . 56 (14): 8454–8461. doi :10.1021/acs.inorgchem.7b01157 . ISSN 0020-1669 . PMID 28644026 .
^ Chen, Yu-Kun; Chen, Mei-Chun; Zhou, Liu-Jiang; Chen, Ling; Wu, Li-Ming (2013-08-05). "Syntheses, Structures, and Nonlinear Optical Properties of Quaternary Chalcogenides: Pb 4 Ga 4 GeQ 12 (Q = S, Se)" . Inorganic Chemistry . 52 (15): 8334–8341. doi :10.1021/ic400995z . ISSN 0020-1669 . PMID 23848994 .
^ Wu, Xiaowen; Gu, Xiaofeng; Pan, Hui; Hu, Yi; Wu, Kui (2018-04-13). "Synthesis, Crystal Structures, Optical Properties and Theoretical Calculations of Two Metal Chalcogenides Ba2AlSbS5 and Ba2GaBiSe5" . Crystals . 8 (4): 165. doi :10.3390/cryst8040165 . ISSN 2073-4352 .
Gallium(−V) Gallium(I) Gallium(II) Gallium(I,III) Gallium(III)
Salts and covalent derivatives of the
selenide ion