No
|
YEAR
|
LECTURER
|
SUBJECT
|
Géotechnique
|
AFFILIATION
|
1
|
1961
|
A. Casagrande
|
Control of seepage through foundations and abutments of dams[3]
|
11(3) 161-181
|
Harvard University
|
2
|
1962
|
L. F. Cooling
|
Field measurements in soil mechanics[4]
|
12(2) 77-103
|
Building Research Establishment
|
3
|
1963
|
A. Mayer
|
Recent work in rock mechanics[5]
|
13(2) 99-118
|
|
4
|
1964
|
A. W. Skempton
|
Long-term stability of clay slopes[6]
|
14(2) 77-101
|
Imperial College
|
5
|
1965
|
N. M. Newmark
|
Effects of earthquakes on dams and embankments[7]
|
15(2) 139-159
|
University of Illinois at Urbana-Champaign
|
6
|
1966
|
A. W. Bishop
|
The strength of soils as engineering materials[8]
|
16(2) 91-128
|
Imperial College
|
7
|
1967
|
L. Bjerrum
|
Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[9]
|
17(2) 83-117
|
Norwegian Geotechnical Institute
|
8
|
1968
|
R. Glossop
|
The rise of geotechnology and its influence on engineering practice[10]
|
18(2) 107-150
|
John Mowlem and Co., Ltd
|
9
|
1969
|
R. B. Peck
|
Advantages and limitations of the observational method in applied soil mechanics[11]
|
19(2) 171-187
|
University of Illinois
|
10
|
1970
|
K. H. Roscoe
|
The influence of strains in soil mechanics[12]
|
20(2) 129-170
|
University of Cambridge
|
11
|
1971
|
J. C. Jaeger
|
Friction of rocks and stability of rock slopes[13]
|
21(2) 97-134
|
Australian National University, Canberra
|
12
|
1972
|
P. W. Rowe
|
The relevance of soil fabric to site investigation practice[14]
|
22(2) 195-300
|
University of Manchester
|
13
|
1973
|
T. W. Lambe
|
Predictions in soil engineering[15]
|
23(2) 151-201
|
Massachusetts Institute of Technology
|
14
|
1974
|
R. E. Gibson
|
The analytical method in soil mechanics[16]
|
24(2) 115-139
|
King's College, London
|
15
|
1975
|
J. Kérisel
|
Old structures in relation to soil conditions[17]
|
25(3) 433-482
|
Simecsol Études
|
16
|
1976
|
A. C. Meigh
|
The Triassic rocks, with particular reference to predicted and observed performance of some major foundations[18]
|
26(3) 393-451
|
Soil Mechanics Limited
|
17
|
1977
|
V. F. B. de Mello
|
Reflections on design decisions of practical significance to embankment dams[19]
|
27(3) 281-354
|
Private Consultant, Brazil
|
18
|
1978
|
W. H. Ward
|
Ground supports for tunnels in weak rocks[20]
|
28(2) 135-170
|
Building Research Establishment
|
19
|
1979
|
H. Bolton Seed
|
Considerations in the earthquake-resistant design of earth and rockfill dams[21]
|
29(3) 215-262
|
University of California, Berkeley
|
20
|
1980
|
A. N. Schofield
|
Cambridge geotechnical centrifuge operations[22]
|
30(3) 227-267
|
University of Cambridge
|
21
|
1981
|
N. R. Morgenstern
|
Geotechnical engineering and frontier resource development[23]
|
31(3) 305-365
|
University of Alberta
|
22
|
1982
|
D. J. Henkel
|
Geology, geomorphology and geotechnics[24]
|
32(3) 175-194
|
Ove Arup & Partners
|
23
|
1983
|
E. Hoek
|
Strength of jointed rock masses[25]
|
33(3) 187-222
|
Golder Associates, Vancouver
|
24
|
1984
|
C. P. Wroth
|
The interpretation of in situ soil tests[26]
|
34(4) 449-488
|
University of Oxford
|
25
|
1985
|
N. Janbu
|
Soil models in offshore engineering[27]
|
35(3) 241-280
|
Norwegian Institute of Technology
|
26
|
1986
|
A. D. M. Penman
|
On the embankment dam[28]
|
36(3) 303-347
|
Geotechnical Engineering Consultant, Harpenden
|
27
|
1987
|
R. F. Scott
|
Failure[29]
|
37(4) 423-466
|
California Institute of Technology
|
28
|
1988
|
H. B. Sutherland
|
Uplift resistance in soils[30]
|
38(4) 493-515
|
University of Glasgow Trust
|
29
|
1989
|
H. G. Poulos
|
Pile behaviour - theory and application[31]
|
39(3) 365-415
|
University of Sydney
|
30
|
1990
|
J. B. Burland
|
On the compressibility and shear strength of natural clays[32]
|
40(3) 329-378
|
Imperial College
|
31
|
1991
|
J. K. Mitchell
|
Conduction phenomena: from theory to geotechnical practice[33]
|
41(3) 299-339
|
University of California, Berkeley
|
32
|
1992
|
B. Simpson
|
Retaining structures: displacement and design[34]
|
42(4) 541-576
|
Ove Arup & Partners
|
33
|
1993
|
K. Ishihara
|
Liquefaction and flow failure during earthquakes[35]
|
43(3) 351-414
|
University of Tokyo
|
34
|
1994
|
P. R. Vaughan
|
Assumption, prediction and reality in geotechnical engineering[36]
|
44(4) 573-608
|
Imperial College
|
35
|
1995
|
R. E. Goodman
|
Block theory and its application[37]
|
45(3) 383-422
|
University of California, Berkeley
|
36
|
1996
|
S. F. Brown
|
Soil mechanics in pavement engineering[38]
|
46(3) 383-425
|
University of Nottingham
|
37
|
1997
|
G. E. Blight
|
Interactions between the atmosphere and the Earth[39]
|
47(4) 715-766
|
University of Witwatersrand
|
38
|
1998
|
D. W. Hight
|
Soil characterisation: the importance of structure and anisotropy
|
-
|
Imperial College
|
39
|
1999
|
S. Leroueil
|
Natural slopes and cuts: movement and failure mechanisms[40][41]
|
51(3) 197-243
|
Université Laval, Ste-Foy, Québec
|
40
|
2000
|
J. H. Atkinson
|
Non-linear soil stiffness in routine design[42][43]
|
50(5) 487-507
|
City University, London
|
41
|
2001
|
H. Brandl
|
Energy foundations and other thermo-active ground structures[44][45]
|
56(2) 81-122
|
Vienna University of Technology, Austria
|
42
|
2002
|
D. M. Potts
|
Numerical analysis: a virtual dream or practical reality?[46][47]
|
53(6) 535-572
|
Imperial College
|
43
|
2003
|
M. F. Randolph
|
Science and empiricism in pile foundation design[48][49]
|
53(10) 847-874
|
University of Western Australia
|
44
|
2004
|
N. N. Ambraseys
|
Engineering, seismology and soil mechanics
|
-
|
Imperial College
|
45
|
2005
|
R. K. Rowe
|
Long term performance of contaminant barrier systems[50][51]
|
55(9) 631-678
|
Queen's University at Kingston, Ontario, Canada
|
46
|
2006
|
R. J. Mair
|
Tunnelling and geotechnics - new horizons[52][53]
|
58(9) 695-736
|
University of Cambridge
|
47
|
2007
|
A. Gens
|
Soil-environment interactions in geotechnical engineering[54][55]
|
60(1) 3-74
|
Universitat Politècnica de Catalunya
|
48
|
2008
|
J. A. Charles
|
The engineering behaviour of fill - the use, misuse and disuse of case histories[56][57]
|
58(7) 541-570
|
Building Research Establishment
|
49
|
2009
|
T. D. O'Rourke
|
Geohazards & Large Geographically Distributed Systems[58][59]
|
60(7) 505-543
|
Cornell University
|
50
|
2010
|
C. R. I. Clayton
|
Stiffness at small strain - research and practice[60][61]
|
61(1) 5-37
|
University of Southampton
|
51
|
2011
|
S. W. Sloan
|
Geotechnical Stability Analysis[62][63]
|
63(7) 531-571
|
University of Newcastle, Australia
|
52
|
2012
|
M. D. Bolton
|
Performance-based design in geotechnical engineering
|
|
University of Cambridge
|
53
|
2013
|
M. Jamiolkowski
|
Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility[64]
|
64(8) 590-619
|
Politecnico di Torino
|
54
|
2014
|
G. T. Houlsby
|
Interactions in Offshore Foundation Design[65][66][67]
|
66(10) 791-825
|
University of Oxford
|
55
|
2015
|
S. Lacasse
|
Hazard, Risk and Reliability in Geotechnical Practice[68]
|
|
Norwegian Geotechnical Institute
|
56
|
2016
|
R. Jardine
|
Geotechnics and Energy[69][70]
|
70(1) 3-59
|
Imperial College
|
57
|
2017
|
E. Alonso
|
Triggering and Motion of Landslides
|
71(1) 3-59
|
Universitat Politècnica de Catalunya
|
58
|
2018
|
N. O'Riordan
|
Dynamic soil-structure interaction[71]
|
|
ARUP
|
59
|
2019
|
G. Gazetas
|
Benefits of Unconventional Seismic Foundation Design[72][73]
|
|
National Technical University of Athens
|
60
|
2022 (2020)
|
S. Jefferis
|
The Unusual and the Unexpected in Geotechnical Engineering [74][75]
|
|
Environmental Geotechnics Limited
|
61
|
2023
|
John P. Carter[76][77]
|
Constitutive Modelling in Computational Geomechanics [78]
|
|
University of Newcastle, Australia
|
62
|
2024
|
Lidija Zdravković[79] [80]
|
Geotechnical Engineering for a Sustainable Society [81] [82]
|
|
Imperial College London
|
63
|
2025
|
Kenichi Soga [83] [84] [85] [86]
|
|
|
University of California, Berkeley
|