In combinatorial mathematics , a q -exponential is a q -analog of the exponential function ,
namely the eigenfunction of a q -derivative. There are many q -derivatives, for example, the classical q -derivative , the Askey–Wilson operator , etc. Therefore, unlike the classical exponentials, q -exponentials are not unique. For example,
e
q
(
z
)
{\displaystyle e_{q}(z)}
is the q -exponential corresponding to the classical q -derivative while
E
q
(
z
)
{\displaystyle {\mathcal {E}}_{q}(z)}
are eigenfunctions of the Askey–Wilson operators.
The q -exponential is also known as the quantum dilogarithm .[ 1] [ 2]
Definition
The q -exponential
e
q
(
z
)
{\displaystyle e_{q}(z)}
is defined as
e
q
(
z
)
=
∑
n
=
0
∞
z
n
[
n
]
q
!
=
∑
n
=
0
∞
z
n
(
1
−
q
)
n
(
q
;
q
)
n
=
∑
n
=
0
∞
z
n
(
1
−
q
)
n
(
1
−
q
n
)
(
1
−
q
n
−
1
)
⋯
(
1
−
q
)
{\displaystyle e_{q}(z)=\sum _{n=0}^{\infty }{\frac {z^{n}}{[n]_{q}!}}=\sum _{n=0}^{\infty }{\frac {z^{n}(1-q)^{n}}{(q;q)_{n}}}=\sum _{n=0}^{\infty }z^{n}{\frac {(1-q)^{n}}{(1-q^{n})(1-q^{n-1})\cdots (1-q)}}}
where
[
n
]
!
q
{\displaystyle [n]!_{q}}
is the q -factorial and
(
q
;
q
)
n
=
(
1
−
q
n
)
(
1
−
q
n
−
1
)
⋯
(
1
−
q
)
{\displaystyle (q;q)_{n}=(1-q^{n})(1-q^{n-1})\cdots (1-q)}
is the q -Pochhammer symbol . That this is the q -analog of the exponential follows from the property
(
d
d
z
)
q
e
q
(
z
)
=
e
q
(
z
)
{\displaystyle \left({\frac {d}{dz}}\right)_{q}e_{q}(z)=e_{q}(z)}
where the derivative on the left is the q -derivative . The above is easily verified by considering the q -derivative of the monomial
(
d
d
z
)
q
z
n
=
z
n
−
1
1
−
q
n
1
−
q
=
[
n
]
q
z
n
−
1
.
{\displaystyle \left({\frac {d}{dz}}\right)_{q}z^{n}=z^{n-1}{\frac {1-q^{n}}{1-q}}=[n]_{q}z^{n-1}.}
Here,
[
n
]
q
{\displaystyle [n]_{q}}
is the q -bracket .
For other definitions of the q -exponential function, see Exton (1983) , Ismail & Zhang (1994) , and Cieśliński (2011) .
Properties
For real
q
>
1
{\displaystyle q>1}
, the function
e
q
(
z
)
{\displaystyle e_{q}(z)}
is an entire function of
z
{\displaystyle z}
. For
q
<
1
{\displaystyle q<1}
,
e
q
(
z
)
{\displaystyle e_{q}(z)}
is regular in the disk
|
z
|
<
1
/
(
1
−
q
)
{\displaystyle |z|<1/(1-q)}
.
Note the inverse,
e
q
(
z
)
e
1
/
q
(
−
z
)
=
1
{\displaystyle ~e_{q}(z)~e_{1/q}(-z)=1}
.
The analogue of
exp
(
x
)
exp
(
y
)
=
exp
(
x
+
y
)
{\displaystyle \exp(x)\exp(y)=\exp(x+y)}
does not hold for real numbers
x
{\displaystyle x}
and
y
{\displaystyle y}
. However, if these are operators satisfying the commutation relation
x
y
=
q
y
x
{\displaystyle xy=qyx}
, then
e
q
(
x
)
e
q
(
y
)
=
e
q
(
x
+
y
)
{\displaystyle e_{q}(x)e_{q}(y)=e_{q}(x+y)}
holds true.[ 3]
Relations
For
−
1
<
q
<
1
{\displaystyle -1<q<1}
, a function that is closely related is
E
q
(
z
)
.
{\displaystyle E_{q}(z).}
It is a special case of the basic hypergeometric series ,
E
q
(
z
)
=
1
ϕ
1
(
0
0
;
z
)
=
∑
n
=
0
∞
q
(
n
2
)
(
−
z
)
n
(
q
;
q
)
n
=
∏
n
=
0
∞
(
1
−
q
n
z
)
=
(
z
;
q
)
∞
.
{\displaystyle E_{q}(z)=\;_{1}\phi _{1}\left({\scriptstyle {0 \atop 0}}\,;\,z\right)=\sum _{n=0}^{\infty }{\frac {q^{\binom {n}{2}}(-z)^{n}}{(q;q)_{n}}}=\prod _{n=0}^{\infty }(1-q^{n}z)=(z;q)_{\infty }.}
Clearly,
lim
q
→
1
E
q
(
z
(
1
−
q
)
)
=
lim
q
→
1
∑
n
=
0
∞
q
(
n
2
)
(
1
−
q
)
n
(
q
;
q
)
n
(
−
z
)
n
=
e
−
z
.
{\displaystyle \lim _{q\to 1}E_{q}\left(z(1-q)\right)=\lim _{q\to 1}\sum _{n=0}^{\infty }{\frac {q^{\binom {n}{2}}(1-q)^{n}}{(q;q)_{n}}}(-z)^{n}=e^{-z}.~}
Relation with Dilogarithm
e
q
(
x
)
{\displaystyle e_{q}(x)}
has the following infinite product representation:
e
q
(
x
)
=
(
∏
k
=
0
∞
(
1
−
q
k
(
1
−
q
)
x
)
)
−
1
.
{\displaystyle e_{q}(x)=\left(\prod _{k=0}^{\infty }(1-q^{k}(1-q)x)\right)^{-1}.}
On the other hand,
log
(
1
−
x
)
=
−
∑
n
=
1
∞
x
n
n
{\displaystyle \log(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}}
holds.
When
|
q
|
<
1
{\displaystyle |q|<1}
,
log
e
q
(
x
)
=
−
∑
k
=
0
∞
log
(
1
−
q
k
(
1
−
q
)
x
)
=
∑
k
=
0
∞
∑
n
=
1
∞
(
q
k
(
1
−
q
)
x
)
n
n
=
∑
n
=
1
∞
(
(
1
−
q
)
x
)
n
(
1
−
q
n
)
n
=
1
1
−
q
∑
n
=
1
∞
(
(
1
−
q
)
x
)
n
[
n
]
q
n
.
{\displaystyle {\begin{aligned}\log e_{q}(x)&=-\sum _{k=0}^{\infty }\log(1-q^{k}(1-q)x)\\&=\sum _{k=0}^{\infty }\sum _{n=1}^{\infty }{\frac {(q^{k}(1-q)x)^{n}}{n}}\\&=\sum _{n=1}^{\infty }{\frac {((1-q)x)^{n}}{(1-q^{n})n}}\\&={\frac {1}{1-q}}\sum _{n=1}^{\infty }{\frac {((1-q)x)^{n}}{[n]_{q}n}}\end{aligned}}.}
By taking the limit
q
→
1
{\displaystyle q\to 1}
,
lim
q
→
1
(
1
−
q
)
log
e
q
(
x
/
(
1
−
q
)
)
=
L
i
2
(
x
)
,
{\displaystyle \lim _{q\to 1}(1-q)\log e_{q}(x/(1-q))=\mathrm {Li} _{2}(x),}
where
L
i
2
(
x
)
{\displaystyle \mathrm {Li} _{2}(x)}
is the dilogarithm .
References
Cieśliński, Jan L. (2011). "Improved q-exponential and q-trigonometric functions" . Applied Mathematics Letters . 24 (12): 2110– 2114. arXiv :1006.5652 . doi :10.1016/j.aml.2011.06.009 . S2CID 205496812 .
Exton, Harold (1983). q-Hypergeometric Functions and Applications . New York: Halstead Press, Chichester: Ellis Horwood. ISBN 0853124914 .
Gasper, George ; Rahman, Mizan Rahman (2004). Basic Hypergeometric Series . Cambridge University Press. ISBN 0521833574 .
Ismail, Mourad E. H. (2005). Classical and Quantum Orthogonal Polynomials in One Variable . Cambridge University Press. doi :10.1017/CBO9781107325982 . ISBN 9780521782012 .
Ismail, Mourad E. H. ; Zhang, Ruiming (1994). "Diagonalization of certain integral operators" . Advances in Mathematics . 108 (1): 1– 33. doi :10.1006/aima.1994.1077 .
Ismail, Mourad E. H. ; Rahman, Mizan ; Zhang, Ruiming (1996). "Diagonalization of certain integral operators II" . Journal of Computational and Applied Mathematics . 68 (1– 2): 163– 196. CiteSeerX 10.1.1.234.4251 . doi :10.1016/0377-0427(95)00263-4 .
Jackson, F. H. (1909). "On q-functions and a certain difference operator". Transactions of the Royal Society of Edinburgh . 46 (2): 253– 281. doi :10.1017/S0080456800002751 . S2CID 123927312 .