Q-analog of the ordinary derivative
In mathematics , in the area of combinatorics and quantum calculus , the q -derivative , or Jackson derivative , is a q -analog of the ordinary derivative , introduced by Frank Hilton Jackson . It is the inverse of Jackson's q -integration . For other forms of q-derivative, see Chung et al. (1994) .
Definition
The q -derivative of a function f (x ) is defined as
(
d
d
x
)
q
f
(
x
)
=
f
(
q
x
)
−
f
(
x
)
q
x
−
x
.
{\displaystyle \left({\frac {d}{dx}}\right)_{q}f(x)={\frac {f(qx)-f(x)}{qx-x}}.}
It is also often written as
D
q
f
(
x
)
{\displaystyle D_{q}f(x)}
. The q -derivative is also known as the Jackson derivative .
Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator
D
q
=
1
x
q
d
d
(
ln
x
)
−
1
q
−
1
,
{\displaystyle D_{q}={\frac {1}{x}}~{\frac {q^{d~~~ \over d(\ln x)}-1}{q-1}}~,}
which goes to the plain derivative,
D
q
→
d
d
x
{\displaystyle D_{q}\to {\frac {d}{dx}}}
as
q
→
1
{\displaystyle q\to 1}
.
It is manifestly linear,
D
q
(
f
(
x
)
+
g
(
x
)
)
=
D
q
f
(
x
)
+
D
q
g
(
x
)
.
{\displaystyle \displaystyle D_{q}(f(x)+g(x))=D_{q}f(x)+D_{q}g(x)~.}
It has a product rule analogous to the ordinary derivative product rule, with two equivalent forms
D
q
(
f
(
x
)
g
(
x
)
)
=
g
(
x
)
D
q
f
(
x
)
+
f
(
q
x
)
D
q
g
(
x
)
=
g
(
q
x
)
D
q
f
(
x
)
+
f
(
x
)
D
q
g
(
x
)
.
{\displaystyle \displaystyle D_{q}(f(x)g(x))=g(x)D_{q}f(x)+f(qx)D_{q}g(x)=g(qx)D_{q}f(x)+f(x)D_{q}g(x).}
Similarly, it satisfies a quotient rule,
D
q
(
f
(
x
)
/
g
(
x
)
)
=
g
(
x
)
D
q
f
(
x
)
−
f
(
x
)
D
q
g
(
x
)
g
(
q
x
)
g
(
x
)
,
g
(
x
)
g
(
q
x
)
≠
0.
{\displaystyle \displaystyle D_{q}(f(x)/g(x))={\frac {g(x)D_{q}f(x)-f(x)D_{q}g(x)}{g(qx)g(x)}},\quad g(x)g(qx)\neq 0.}
There is also a rule similar to the chain rule for ordinary derivatives. Let
g
(
x
)
=
c
x
k
{\displaystyle g(x)=cx^{k}}
. Then
D
q
f
(
g
(
x
)
)
=
D
q
k
(
f
)
(
g
(
x
)
)
D
q
(
g
)
(
x
)
.
{\displaystyle \displaystyle D_{q}f(g(x))=D_{q^{k}}(f)(g(x))D_{q}(g)(x).}
The eigenfunction of the q -derivative is the q -exponential eq (x ).
Relationship to ordinary derivatives
Q -differentiation resembles ordinary differentiation, with curious differences. For example, the q -derivative of the monomial is:
(
d
d
z
)
q
z
n
=
1
−
q
n
1
−
q
z
n
−
1
=
[
n
]
q
z
n
−
1
{\displaystyle \left({\frac {d}{dz}}\right)_{q}z^{n}={\frac {1-q^{n}}{1-q}}z^{n-1}=[n]_{q}z^{n-1}}
where
[
n
]
q
{\displaystyle [n]_{q}}
is the q -bracket of n . Note that
lim
q
→
1
[
n
]
q
=
n
{\displaystyle \lim _{q\to 1}[n]_{q}=n}
so the ordinary derivative is regained in this limit.
The n -th q -derivative of a function may be given as:
(
D
q
n
f
)
(
0
)
=
f
(
n
)
(
0
)
n
!
(
q
;
q
)
n
(
1
−
q
)
n
=
f
(
n
)
(
0
)
n
!
[
n
]
!
q
{\displaystyle (D_{q}^{n}f)(0)={\frac {f^{(n)}(0)}{n!}}{\frac {(q;q)_{n}}{(1-q)^{n}}}={\frac {f^{(n)}(0)}{n!}}[n]!_{q}}
provided that the ordinary n -th derivative of f exists at x = 0. Here,
(
q
;
q
)
n
{\displaystyle (q;q)_{n}}
is the q -Pochhammer symbol , and
[
n
]
!
q
{\displaystyle [n]!_{q}}
is the q -factorial . If
f
(
x
)
{\displaystyle f(x)}
is analytic we can apply the Taylor formula to the definition of
D
q
(
f
(
x
)
)
{\displaystyle D_{q}(f(x))}
to get
D
q
(
f
(
x
)
)
=
∑
k
=
0
∞
(
q
−
1
)
k
(
k
+
1
)
!
x
k
f
(
k
+
1
)
(
x
)
.
{\displaystyle \displaystyle D_{q}(f(x))=\sum _{k=0}^{\infty }{\frac {(q-1)^{k}}{(k+1)!}}x^{k}f^{(k+1)}(x).}
A q -analog of the Taylor expansion of a function about zero follows:
f
(
z
)
=
∑
n
=
0
∞
f
(
n
)
(
0
)
z
n
n
!
=
∑
n
=
0
∞
(
D
q
n
f
)
(
0
)
z
n
[
n
]
!
q
.
{\displaystyle f(z)=\sum _{n=0}^{\infty }f^{(n)}(0)\,{\frac {z^{n}}{n!}}=\sum _{n=0}^{\infty }(D_{q}^{n}f)(0)\,{\frac {z^{n}}{[n]!_{q}}}.}
Higher order q -derivatives
The following representation for higher order
q
{\displaystyle q}
-derivatives is known:
D
q
n
f
(
x
)
=
1
(
1
−
q
)
n
x
n
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
q
q
(
k
2
)
−
(
n
−
1
)
k
f
(
q
k
x
)
.
{\displaystyle D_{q}^{n}f(x)={\frac {1}{(1-q)^{n}x^{n}}}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}_{q}q^{{\binom {k}{2}}-(n-1)k}f(q^{k}x).}
(
n
k
)
q
{\displaystyle {\binom {n}{k}}_{q}}
is the
q
{\displaystyle q}
-binomial coefficient. By changing the order of summation as
r
=
n
−
k
{\displaystyle r=n-k}
, we obtain the next formula:
D
q
n
f
(
x
)
=
(
−
1
)
n
q
−
(
n
2
)
(
1
−
q
)
n
x
n
∑
r
=
0
n
(
−
1
)
r
(
n
r
)
q
q
(
r
2
)
f
(
q
n
−
r
x
)
.
{\displaystyle D_{q}^{n}f(x)={\frac {(-1)^{n}q^{-{\binom {n}{2}}}}{(1-q)^{n}x^{n}}}\sum _{r=0}^{n}(-1)^{r}{\binom {n}{r}}_{q}q^{\binom {r}{2}}f(q^{n-r}x).}
Higher order
q
{\displaystyle q}
-derivatives are used to
q
{\displaystyle q}
-Taylor formula and the
q
{\displaystyle q}
-Rodrigues' formula (the formula used to construct
q
{\displaystyle q}
-orthogonal polynomials ).
Generalizations
Post Quantum Calculus
Post quantum calculus is a generalization of the theory of quantum calculus , and it uses the following operator:[ 7]
D
p
,
q
f
(
x
)
:=
f
(
p
x
)
−
f
(
q
x
)
(
p
−
q
)
x
,
x
≠
0.
{\displaystyle D_{p,q}f(x):={\frac {f(px)-f(qx)}{(p-q)x}},\quad x\neq 0.}
Hahn difference
Wolfgang Hahn introduced the following operator (Hahn difference):[ 9] [ 10]
D
q
,
ω
f
(
x
)
:=
f
(
q
x
+
ω
)
−
f
(
x
)
(
q
−
1
)
x
+
ω
,
0
<
q
<
1
,
ω
>
0.
{\displaystyle D_{q,\omega }f(x):={\frac {f(qx+\omega )-f(x)}{(q-1)x+\omega }},\quad 0<q<1,\quad \omega >0.}
When
ω
→
0
{\displaystyle \omega \to 0}
this operator reduces to
q
{\displaystyle q}
-derivative, and when
q
→
1
{\displaystyle q\to 1}
it reduces to forward difference. This is a successful tool for constructing families of orthogonal polynomials and investigating some approximation problems.[ 12] [ 13]
β -derivative
β
{\displaystyle \beta }
-derivative is an operator defined as follows:[ 14]
D
β
f
(
t
)
:=
f
(
β
(
t
)
)
−
f
(
t
)
β
(
t
)
−
t
,
β
≠
t
,
β
:
I
→
I
.
{\displaystyle D_{\beta }f(t):={\frac {f(\beta (t))-f(t)}{\beta (t)-t}},\quad \beta \neq t,\quad \beta :I\to I.}
In the definition,
I
{\displaystyle I}
is a given interval, and
β
(
t
)
{\displaystyle \beta (t)}
is any continuous function that strictly monotonically increases (i.e.
t
>
s
→
β
(
t
)
>
β
(
s
)
{\displaystyle t>s\rightarrow \beta (t)>\beta (s)}
). When
β
(
t
)
=
q
t
{\displaystyle \beta (t)=qt}
then this operator is
q
{\displaystyle q}
-derivative, and when
β
(
t
)
=
q
t
+
ω
{\displaystyle \beta (t)=qt+\omega }
this operator is Hahn difference.
Applications
The q-calculus has been used in machine learning for designing stochastic activation functions.
See also
Citations
^ Gupta V., Rassias T.M., Agrawal P.N., Acu A.M. (2018) Basics of Post-Quantum Calculus. In: Recent Advances in Constructive Approximation Theory. SpringerOptimization and Its Applications, vol 138. Springer.
^ Hahn, W. (1949). Math. Nachr. 2: 4-34.
^ Hahn, W. (1983) Monatshefte Math. 95: 19-24.
^ Kwon, K.; Lee, D.; Park, S.; Yoo, B.: Kyungpook Math. J. 38, 259-281 (1998).
^ Alvarez-Nodarse, R.: J. Comput. Appl. Math. 196, 320-337 (2006).
^ Auch, T. (2013): Development and Application of Difference and Fractional Calculus on Discrete Time Scales . PhD thesis, University of Nebraska-Lincoln.
Bibliography
Annaby, M. H.; Mansour, Z. S. (2008). "q-Taylor and interpolation-difference operators" . Journal of Mathematical Analysis and Applications . 344 (1): 472– 483. doi :10.1016/j.jmaa.2008.02.033 .
Chung, K. S.; Chung, W. S.; Nam, S. T.; Kang, H. J. (1994). "New q-derivative and q-logarithm". International Journal of Theoretical Physics . 33 (10): 2019– 2029. Bibcode :1994IJTP...33.2019C . doi :10.1007/BF00675167 . S2CID 117685233 .
Duran, U. (2016). Post Quantum Calculus (M.Sc. thesis). Department of Mathematics, University of Gaziantep Graduate School of Natural & Applied Sciences. Retrieved 9 March 2022 – via ResearchGate .
Ernst, T. (2012). A comprehensive treatment of q-calculus . Springer Science & Business Media. ISBN 978-303480430-1 .
Ernst, Thomas (2001). "The History of q-Calculus and a new method" (PDF) . Archived from the original (PDF) on 28 November 2009. Retrieved 9 March 2022 .
Exton, H. (1983). q-Hypergeometric Functions and Applications . New York: Halstead Press. ISBN 978-047027453-8 .
Foupouagnigni, M. (1998). Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: fourth-order difference equation for the rth associated and the Laguerre-Freud equations for the recurrence coefficients (Ph.D. thesis). Université Nationale du Bénin.
Hamza, A.; Sarhan, A.; Shehata, E.; Aldwoah, K. (2015). "A General Quantum Difference Calculus" . Advances in Difference Equations . 1 : 182. doi :10.1186/s13662-015-0518-3 . S2CID 54790288 .
Jackson, F. H. (1908). "On q-functions and a certain difference operator". Trans. R. Soc. Edinb . 46 (2): 253– 281. doi :10.1017/S0080456800002751 . S2CID 123927312 .
Kac, Victor; Pokman Cheung (2002). Quantum Calculus . Springer-Verlag. ISBN 0-387-95341-8 .
Koekoek, J.; Koekoek, R. (1999). "A note on the q-derivative operator". J. Math. Anal. Appl . 176 (2): 627– 634. arXiv :math/9908140 . doi :10.1006/jmaa.1993.1237 . S2CID 329394 .
Koepf, W.; Rajković, P. M.; Marinković, S. D. (July 2007). "Properties of q-holonomic functions". Journal of Difference Equations and Applications . 13 (7): 621– 638. CiteSeerX 10.1.1.298.4595 . doi :10.1080/10236190701264925 . S2CID 123079843 .
Koepf, Wolfram (2014). Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities . Springer. ISBN 978-1-4471-6464-7 .
Nielsen, Frank; Sun, Ke (2021). "q-Neurons: Neuron Activations Based on Stochastic Jackson's Derivative Operators" . IEEE Trans. Neural Netw. Learn. Syst . 32 (6): 2782– 2789. arXiv :1806.00149 . doi :10.1109/TNNLS.2020.3005167 . PMID 32886614 . S2CID 44143912 .