In mathematics, Porter's constant C arises in the study of the efficiency of the Euclidean algorithm .[ 1] [ 2] It is named after J. W. Porter of University College, Cardiff .
Euclid's algorithm finds the greatest common divisor of two positive integers m and n . Hans Heilbronn proved that the average number of iterations of Euclid's algorithm, for fixed n and averaged over all choices of relatively prime integers m < n ,
is
12
ln
2
π
2
ln
n
+
o
(
ln
n
)
.
{\displaystyle {\frac {12\ln 2}{\pi ^{2}}}\ln n+o(\ln n).}
Porter showed that the error term in this estimate is a constant, plus a polynomially-small correction, and Donald Knuth evaluated this constant to high accuracy. It is:
C
=
6
ln
2
π
2
[
3
ln
2
+
4
γ
−
24
π
2
ζ
′
(
2
)
−
2
]
−
1
2
=
6
ln
2
(
(
48
ln
A
)
−
(
ln
2
)
−
(
4
ln
π
)
−
2
)
π
2
−
1
2
=
1.4670780794
…
{\displaystyle {\begin{aligned}C&={{6\ln 2} \over {\pi ^{2}}}\left[3\ln 2+4\gamma -{{24} \over {\pi ^{2}}}\zeta '(2)-2\right]-{{1} \over {2}}\\[6pt]&={{{6\ln 2}((48\ln A)-(\ln 2)-(4\ln \pi )-2)} \over {\pi ^{2}}}-{{1} \over {2}}\\[6pt]&=1.4670780794\ldots \end{aligned}}}
where
γ
{\displaystyle \gamma }
is the Euler–Mascheroni constant
ζ
{\displaystyle \zeta }
is the Riemann zeta function
A
{\displaystyle A}
is the Glaisher–Kinkelin constant
(sequence A086237 in the OEIS )
−
ζ
′
(
2
)
=
π
2
6
[
12
ln
A
−
γ
−
ln
(
2
π
)
]
=
∑
k
=
2
∞
ln
k
k
2
{\displaystyle -\zeta ^{\prime }(2)={{\pi ^{2}} \over 6}\left[12\ln A-\gamma -\ln(2\pi )\right]=\sum _{k=2}^{\infty }{{\ln k} \over {k^{2}}}}
{\displaystyle }
See also
References
^ Knuth, Donald E. (1976), "Evaluation of Porter's constant", Computers & Mathematics with Applications , 2 (2): 137– 139, doi :10.1016/0898-1221(76)90025-0
^ Porter, J. W. (1975), "On a theorem of Heilbronn", Mathematika , 22 (1): 20– 28, doi :10.1112/S0025579300004459 , MR 0498452 .