Mathematical constant
In mathematics , the Glaisher–Kinkelin constant or Glaisher's constant , typically denoted A , is a mathematical constant , related to special functions like the K -function and the Barnes G -function . The constant also appears in a number of sums and integrals , especially those involving the gamma function and the Riemann zeta function . It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin .
Its approximate value is:
A = 1.282427 129 100 622 636 87 ... (sequence A074962 in the OEIS ).
Glaisher's constant plays a role both in mathematics and in physics . It appears when giving a closed form expression for Porter's constant , when estimating the efficiency of the Euclidean algorithm . It also is connected to solutions of Painlevé differential equations and the Gaudin model .[ 1]
Definition
The Glaisher–Kinkelin constant A can be defined via the following limit :[ 2]
A
=
lim
n
→
∞
H
(
n
)
n
n
2
2
+
n
2
+
1
12
e
−
n
2
4
{\displaystyle A=\lim _{n\rightarrow \infty }{\frac {H(n)}{n^{{\tfrac {n^{2}}{2}}+{\tfrac {n}{2}}+{\tfrac {1}{12}}}\,e^{-{\tfrac {n^{2}}{4}}}}}}
where
H
(
n
)
{\displaystyle H(n)}
is the hyperfactorial :
H
(
n
)
=
∏
i
=
1
n
i
i
=
1
1
⋅
2
2
⋅
3
3
⋅
.
.
.
⋅
n
n
{\displaystyle H(n)=\prod _{i=1}^{n}i^{i}=1^{1}\cdot 2^{2}\cdot 3^{3}\cdot {...}\cdot n^{n}}
An analogous limit, presenting a similarity between
A
{\displaystyle A}
and
2
π
{\displaystyle {\sqrt {2\pi }}}
, is given by Stirling's formula as:
2
π
=
lim
n
→
∞
n
!
n
n
+
1
2
e
−
n
{\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!}{n^{n+{\frac {1}{2}}}\,e^{-n}}}}
with
n
!
=
∏
i
=
1
n
i
=
1
⋅
2
⋅
3
⋅
.
.
.
⋅
n
{\displaystyle n!=\prod _{i=1}^{n}i=1\cdot 2\cdot 3\cdot {...}\cdot n}
which shows that just as π is obtained from approximation of the factorials , A is obtained from the approximation of the hyperfactorials.
Relation to special functions
Just as the factorials can be extended to the complex numbers by the gamma function such that
Γ
(
n
)
=
(
n
−
1
)
!
{\displaystyle \Gamma (n)=(n-1)!}
for positive integers n , the hyperfactorials can be extended by the K-function [ 3] with
K
(
n
)
=
H
(
n
−
1
)
{\displaystyle K(n)=H(n-1)}
also for positive integers n , where:
K
(
z
)
=
(
2
π
)
−
z
−
1
2
exp
[
(
z
2
)
+
∫
0
z
−
1
ln
Γ
(
t
+
1
)
d
t
]
{\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1)\,dt\right]}
This gives:[ 1]
A
=
lim
n
→
∞
K
(
n
+
1
)
n
n
2
2
+
n
2
+
1
12
e
−
n
2
4
{\displaystyle A=\lim _{n\rightarrow \infty }{\frac {K(n+1)}{n^{{\tfrac {n^{2}}{2}}+{\tfrac {n}{2}}+{\tfrac {1}{12}}}\,e^{-{\tfrac {n^{2}}{4}}}}}}
.
A related function is the Barnes G -function which is given by
G
(
n
)
=
(
Γ
(
n
)
)
n
−
1
K
(
n
)
{\displaystyle G(n)={\frac {(\Gamma (n))^{n-1}}{K(n)}}}
and for which a similar limit exists:[ 2]
1
A
=
lim
n
→
∞
G
(
n
+
1
)
(
2
π
)
n
2
n
n
2
2
−
1
12
e
−
3
n
2
4
+
1
12
{\displaystyle {\frac {1}{A}}=\lim _{n\rightarrow \infty }{\frac {G(n+1)}{\left(2\pi \right)^{\frac {n}{2}}n^{{\frac {n^{2}}{2}}-{\frac {1}{12}}}e^{-{\frac {3n^{2}}{4}}+{\frac {1}{12}}}}}}
.
The Glaisher-Kinkelin constant also appears in the evaluation of the K-function and Barnes-G function at half and quarter integer values such as:[ 1] [ 4]
K
(
1
/
2
)
=
A
3
/
2
2
1
/
24
e
1
/
8
{\displaystyle K(1/2)={\frac {A^{3/2}}{2^{1/24}e^{1/8}}}}
K
(
1
/
4
)
=
A
9
/
8
exp
(
G
4
π
−
3
32
)
{\displaystyle K(1/4)=A^{9/8}\exp \left({\frac {G}{4\pi }}-{\frac {3}{32}}\right)}
G
(
1
/
2
)
=
2
1
/
24
e
1
/
8
A
3
/
2
π
1
/
4
{\displaystyle G(1/2)={\frac {2^{1/24}e^{1/8}}{A^{3/2}\pi ^{1/4}}}}
G
(
1
/
4
)
=
1
2
9
/
16
A
9
/
8
π
3
/
16
ϖ
3
/
8
exp
(
3
32
−
G
4
π
)
{\displaystyle G(1/4)={\frac {1}{2^{9/16}A^{9/8}\pi ^{3/16}\varpi ^{3/8}}}\exp \left({\frac {3}{32}}-{\frac {G}{4\pi }}\right)}
with
G
{\displaystyle G}
being Catalan's constant and
ϖ
=
Γ
(
1
/
4
)
2
2
2
π
{\displaystyle \varpi ={\frac {\Gamma (1/4)^{2}}{2{\sqrt {2\pi }}}}}
being the lemniscate constant .
Similar to the gamma function , there exists a multiplication formula for the K-Function. It involves Glaisher's constant:[ 5]
∏
j
=
1
n
−
1
K
(
j
n
)
=
A
n
2
−
1
n
n
−
1
12
n
e
1
−
n
2
12
n
{\displaystyle \prod _{j=1}^{n-1}K\left({\frac {j}{n}}\right)=A^{\frac {n^{2}-1}{n}}n^{-{\frac {1}{12n}}}e^{\frac {1-n^{2}}{12n}}}
The logarithm of G (z + 1) has the following asymptotic expansion, as established by Barnes:[ 6]
ln
G
(
z
+
1
)
=
z
2
2
ln
z
−
3
z
2
4
+
z
2
ln
2
π
−
1
12
ln
z
+
(
1
12
−
ln
A
)
+
∑
k
=
1
N
B
2
k
+
2
4
k
(
k
+
1
)
z
2
k
+
O
(
1
z
2
N
+
2
)
{\displaystyle \ln G(z+1)={\frac {z^{2}}{2}}\ln z-{\frac {3z^{2}}{4}}+{\frac {z}{2}}\ln 2\pi -{\frac {1}{12}}\ln z+\left({\frac {1}{12}}-\ln A\right)+\sum _{k=1}^{N}{\frac {B_{2k+2}}{4k\left(k+1\right)z^{2k}}}+O\left({\frac {1}{z^{2N+2}}}\right)}
The Glaisher-Kinkelin constant is related to the derivatives of the Euler-constant function :[ 5] [ 7]
γ
′
(
−
1
)
=
11
6
ln
2
+
6
ln
A
−
3
2
ln
π
−
1
{\displaystyle \gamma '(-1)={\frac {11}{6}}\ln 2+6\ln A-{\frac {3}{2}}\ln \pi -1}
γ
″
(
−
1
)
=
10
3
ln
2
+
24
ln
A
−
4
ln
π
−
7
ζ
(
3
)
2
π
2
−
13
4
{\displaystyle \gamma ''(-1)={\frac {10}{3}}\ln 2+24\ln A-4\ln \pi -{\frac {7\zeta (3)}{2\pi ^{2}}}-{\frac {13}{4}}}
A
{\displaystyle A}
also is related to the Lerch transcendent :[ 8]
∂
Φ
∂
s
(
−
1
,
−
1
,
1
)
=
3
ln
A
−
1
3
ln
2
−
1
4
{\displaystyle {\frac {\partial \Phi }{\partial s}}(-1,-1,1)=3\ln A-{\frac {1}{3}}\ln 2-{\frac {1}{4}}}
Glaisher's constant may be used to give values of the derivative of the Riemann zeta function as closed form expressions, such as:[ 2] [ 9]
ζ
′
(
−
1
)
=
1
12
−
ln
A
{\displaystyle \zeta '(-1)={\frac {1}{12}}-\ln A}
ζ
′
(
2
)
=
π
2
6
(
γ
+
ln
2
π
−
12
ln
A
)
{\displaystyle \zeta '(2)={\frac {\pi ^{2}}{6}}\left(\gamma +\ln 2\pi -12\ln A\right)}
where γ is the Euler–Mascheroni constant .
Series expressions
The above formula for
ζ
′
(
2
)
{\displaystyle \zeta '(2)}
gives the following series:[ 2]
∑
k
=
2
∞
ln
k
k
2
=
π
2
6
(
12
ln
A
−
γ
−
ln
2
π
)
{\displaystyle \sum _{k=2}^{\infty }{\frac {\ln k}{k^{2}}}={\frac {\pi ^{2}}{6}}\left(12\ln A-\gamma -\ln 2\pi \right)}
which directly leads to the following product found by Glaisher :
∏
k
=
1
∞
k
1
k
2
=
(
A
12
2
π
e
γ
)
π
2
6
{\displaystyle \prod _{k=1}^{\infty }k^{\frac {1}{k^{2}}}=\left({\frac {A^{12}}{2\pi e^{\gamma }}}\right)^{\frac {\pi ^{2}}{6}}}
Similarly it is
∑
k
≥
3
k
odd
ln
k
k
2
=
π
2
24
(
36
ln
A
−
3
γ
−
ln
16
π
3
)
{\displaystyle \sum _{k\geq 3}^{k{\text{ odd}}}{\frac {\ln k}{k^{2}}}={\frac {\pi ^{2}}{24}}\left(36\ln A-3\gamma -\ln 16\pi ^{3}\right)}
which gives:
∏
k
≥
3
k
odd
k
1
k
2
=
(
A
36
16
π
3
e
3
γ
)
π
2
24
{\displaystyle \prod _{k\geq 3}^{k{\text{ odd}}}k^{\frac {1}{k^{2}}}=\left({\frac {A^{36}}{16\pi ^{3}e^{3\gamma }}}\right)^{\frac {\pi ^{2}}{24}}}
An alternative product formula, defined over the prime numbers , reads:[ 10]
∏
p
prime
p
1
p
2
−
1
=
A
12
2
π
e
γ
,
{\displaystyle \prod _{p{\text{ prime}}}p^{\frac {1}{p^{2}-1}}={\frac {A^{12}}{2\pi e^{\gamma }}},}
Another product is given by:[ 5]
∏
k
=
1
∞
(
e
n
n
(
n
+
1
)
n
)
(
−
1
)
n
−
1
=
2
1
/
6
e
π
A
6
{\displaystyle \prod _{k=1}^{\infty }\left({\frac {en^{n}}{(n+1)^{n}}}\right)^{(-1)^{n-1}}={\frac {2^{1/6}e{\sqrt {\pi }}}{A^{6}}}}
A series involving the cosine integral is:[ 11]
∑
k
=
1
∞
Ci
(
2
k
π
)
k
2
=
π
2
2
(
4
ln
A
−
1
)
{\displaystyle \sum _{k=1}^{\infty }{\frac {{\text{Ci}}(2k\pi )}{k^{2}}}={\frac {\pi ^{2}}{2}}(4\ln A-1)}
Helmut Hasse gave another series representation for the logarithm of Glaisher's constant, following from a series for the Riemann zeta function:[ 8]
ln
A
=
1
8
−
1
2
∑
n
=
0
∞
1
n
+
1
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
(
k
+
1
)
2
ln
(
k
+
1
)
{\displaystyle \ln A={\frac {1}{8}}-{\frac {1}{2}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(k+1)^{2}\ln(k+1)}
Integrals
The following are some definite integrals involving Glaisher's constant:[ 1]
∫
0
∞
x
ln
x
e
2
π
x
−
1
d
x
=
1
24
−
1
2
ln
A
{\displaystyle \int _{0}^{\infty }{\frac {x\ln x}{e^{2\pi x}-1}}\,dx={\frac {1}{24}}-{\frac {1}{2}}\ln A}
∫
0
1
2
ln
Γ
(
x
)
d
x
=
3
2
ln
A
+
5
24
ln
2
+
1
4
ln
π
{\displaystyle \int _{0}^{\frac {1}{2}}\ln \Gamma (x)\,dx={\frac {3}{2}}\ln A+{\frac {5}{24}}\ln 2+{\frac {1}{4}}\ln \pi }
the latter being a special case of:[ 12]
∫
0
z
ln
Γ
(
x
)
d
x
=
z
(
1
−
z
)
2
+
z
2
ln
2
π
+
z
ln
Γ
(
z
)
−
ln
G
(
1
+
z
)
{\displaystyle \int _{0}^{z}\ln \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\ln 2\pi +z\ln \Gamma (z)-\ln G(1+z)}
We further have:[ 13]
∫
0
∞
(
1
−
e
−
x
/
2
)
(
x
coth
x
2
−
2
)
x
3
d
x
=
3
ln
A
−
1
3
ln
2
−
1
8
{\displaystyle \int _{0}^{\infty }{\frac {(1-e^{-x/2})(x\coth {\tfrac {x}{2}}-2)}{x^{3}}}dx=3\ln A-{\frac {1}{3}}\ln 2-{\frac {1}{8}}}
and
∫
0
∞
(
8
−
3
x
)
e
x
−
8
e
x
/
2
−
x
4
x
2
e
x
(
e
x
−
1
)
d
x
=
3
ln
A
−
7
12
ln
2
+
1
2
ln
π
−
1
{\displaystyle \int _{0}^{\infty }{\frac {(8-3x)e^{x}-8e^{x/2}-x}{4x^{2}e^{x}(e^{x}-1)}}dx=3\ln A-{\frac {7}{12}}\ln 2+{\frac {1}{2}}\ln \pi -1}
A double integral is given by:[ 8]
∫
0
1
∫
0
1
−
x
(
1
+
x
y
)
2
ln
x
y
d
x
d
y
=
6
ln
A
−
1
6
ln
2
−
1
2
ln
π
−
1
2
{\displaystyle \int _{0}^{1}\int _{0}^{1}{\frac {-x}{(1+xy)^{2}\ln xy}}dxdy=6\ln A-{\frac {1}{6}}\ln 2-{\frac {1}{2}}\ln \pi -{\frac {1}{2}}}
Generalizations
The Glaisher-Kinkelin constant can be viewed as the first constant in a sequence of infinitely many so-called generalized Glaisher constants or Bendersky constants .[ 1] They emerge from studying the following product:
∏
m
=
1
n
m
m
k
=
1
1
k
⋅
2
2
k
⋅
3
3
k
⋅
.
.
.
⋅
n
n
k
{\displaystyle \prod _{m=1}^{n}m^{m^{k}}=1^{1^{k}}\cdot 2^{2^{k}}\cdot 3^{3^{k}}\cdot {...}\cdot n^{n^{k}}}
Setting
k
=
0
{\displaystyle k=0}
gives the factorial
n
!
{\displaystyle n!}
, while choosing
k
=
1
{\displaystyle k=1}
gives the hyperfactorial
H
(
n
)
{\displaystyle H(n)}
.
Defining the following function
P
k
(
n
)
=
(
n
k
+
1
k
+
1
+
n
k
2
+
B
k
+
1
k
+
1
)
ln
n
−
n
k
+
1
(
k
+
1
)
2
+
k
!
∑
j
=
1
k
−
1
B
j
+
1
(
j
+
1
)
!
n
k
−
j
(
k
−
j
)
!
(
ln
n
+
∑
i
=
1
j
1
k
−
i
+
1
)
{\displaystyle P_{k}(n)=\left({\frac {n^{k+1}}{k+1}}+{\frac {n^{k}}{2}}+{\frac {B_{k+1}}{k+1}}\right)\ln n-{\frac {n^{k+1}}{(k+1)^{2}}}+k!\sum _{j=1}^{k-1}{\frac {B_{j+1}}{(j+1)!}}{\frac {n^{k-j}}{(k-j)!}}\left(\ln n+\sum _{i=1}^{j}{\frac {1}{k-i+1}}\right)}
with the Bernoulli numbers
B
k
{\displaystyle B_{k}}
(and using
B
1
=
0
{\displaystyle B_{1}=0}
), one may approximate the above products asymptotically via
exp
(
P
k
(
n
)
)
{\displaystyle \exp({P_{k}(n)})}
.
For
k
=
0
{\displaystyle k=0}
we get Stirling's approximation without the factor
2
π
{\displaystyle {\sqrt {2\pi }}}
as
exp
(
P
0
(
n
)
)
=
n
n
+
1
2
e
−
n
{\displaystyle \exp({P_{0}(n)})=n^{n+{\frac {1}{2}}}e^{-n}}
.
For
k
=
1
{\displaystyle k=1}
we obtain
exp
(
P
1
(
n
)
)
=
n
n
2
2
+
n
2
+
1
12
e
−
n
2
4
{\displaystyle \exp({P_{1}(n)})=n^{{\tfrac {n^{2}}{2}}+{\tfrac {n}{2}}+{\tfrac {1}{12}}}\,e^{-{\tfrac {n^{2}}{4}}}}
, similar as in the limit definition of
A
{\displaystyle A}
.
This leads to the following definition of the generalized Glaisher constants:
A
k
:=
lim
n
→
∞
(
e
−
P
k
(
n
)
∏
m
=
1
n
m
m
k
)
{\displaystyle A_{k}:=\lim _{n\rightarrow \infty }\left(e^{-P_{k}(n)}\prod _{m=1}^{n}m^{m^{k}}\right)}
which may also be written as:
ln
A
k
:=
lim
n
→
∞
(
−
P
k
(
n
)
+
∑
m
=
1
n
m
k
ln
m
)
{\displaystyle \ln A_{k}:=\lim _{n\rightarrow \infty }\left(-P_{k}(n)+\sum _{m=1}^{n}{m^{k}}\ln m\right)}
This gives
A
0
=
2
π
{\displaystyle A_{0}={\sqrt {2\pi }}}
and
A
1
=
A
{\displaystyle A_{1}=A}
and in general:[ 1] [ 14] [ 15]
A
k
=
exp
(
B
k
+
1
k
+
1
H
k
−
ζ
′
(
−
k
)
)
{\displaystyle A_{k}=\exp \left({\frac {B_{k+1}}{k+1}}H_{k}-\zeta '(-k)\right)}
with the harmonic numbers
H
k
{\displaystyle H_{k}}
and
H
0
=
0
{\displaystyle H_{0}=0}
.
Because of the formula
ζ
′
(
−
2
m
)
=
(
−
1
)
m
(
2
m
)
!
2
(
2
π
)
2
m
ζ
(
2
m
+
1
)
{\displaystyle \zeta '(-2m)=(-1)^{m}{\frac {(2m)!}{2(2\pi )^{2m}}}\zeta (2m+1)}
for
m
>
0
{\displaystyle m>0}
, there exist closed form expressions for
A
k
{\displaystyle A_{k}}
with even
k
=
2
m
{\displaystyle k=2m}
in terms of the values of the Riemann zeta function such as:[ 1]
A
2
=
exp
(
ζ
(
3
)
4
π
2
)
{\displaystyle A_{2}=\exp \left({\frac {\zeta (3)}{4\pi ^{2}}}\right)}
A
4
=
exp
(
−
3
ζ
(
5
)
4
π
4
)
{\displaystyle A_{4}=\exp \left(-{\frac {3\zeta (5)}{4\pi ^{4}}}\right)}
For odd
k
=
2
m
−
1
{\displaystyle k=2m-1}
one can express the constants
A
k
{\displaystyle A_{k}}
in terms of the derivative of the Riemann zeta function such as:
A
1
=
exp
(
−
ζ
′
(
2
)
2
π
2
+
γ
+
ln
2
π
12
)
{\displaystyle A_{1}=\exp \left(-{\frac {\zeta '(2)}{2\pi ^{2}}}+{\frac {\gamma +\ln 2\pi }{12}}\right)}
A
3
=
exp
(
3
ζ
′
(
4
)
4
π
4
−
γ
+
ln
2
π
120
)
{\displaystyle A_{3}=\exp \left({\frac {3\zeta '(4)}{4\pi ^{4}}}-{\frac {\gamma +\ln 2\pi }{120}}\right)}
The numerical values of the first few generalized Glaisher constants are given below:
k
Value of Ak to 50 decimal digits
OEIS
0
2.50662827463100050241576528481104525300698674060993...
A019727
1
1.28242712910062263687534256886979172776768892732500...
A074962
2
1.03091675219739211419331309646694229063319430640348...
A243262
3
0.97955552694284460582421883726349182644553675249552...
A243263
4
0.99204797452504026001343697762544335673690485127618...
A243264
5
1.00968038728586616112008919046263069260327634721152...
A243265
6
1.00591719699867346844401398355425565639061565500693...
A266553
7
0.98997565333341709417539648305886920020824715143074...
A266554
8
0.99171832163282219699954748276579333986785976057305...
A266555
9
1.01846992992099291217065904937667217230861019056407...
A266556
10
1.01911023332938385372216470498629751351348137284099...
A266557
See also
References
^ a b c d e f g Finch, Steven R. (2003-08-18). Mathematical Constants . Cambridge University Press. ISBN 978-0-521-81805-6 .
^ a b c d Weisstein, Eric W. "Glaisher-Kinkelin Constant" . mathworld.wolfram.com . Retrieved 2024-10-05 .
^ Weisstein, Eric W. "K-Function" . mathworld.wolfram.com . Retrieved 2024-10-05 .
^ Weisstein, Eric W. "Barnes G-Function" . mathworld.wolfram.com . Retrieved 2024-10-05 .
^ a b c Sondow, Jonathan; Hadjicostas, Petros (2006-10-16). "The generalized-Euler-constant function
γ
(
z
)
{\displaystyle \gamma (z)}
and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications . 332 : 292– 314. arXiv :math/0610499 . doi :10.1016/j.jmaa.2006.09.081 .
^ E. T. Whittaker and G. N. Watson , "A Course of Modern Analysis ", CUP.
^ Pilehrood, Khodabakhsh Hessami; Pilehrood, Tatiana Hessami (2008-08-04). "Vacca-type series for values of the generalized-Euler-constant function and its derivative". arXiv :0808.0410 [math.NT ].
^ a b c Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16 (3): 247– 270. arXiv :math/0506319 . doi :10.1007/s11139-007-9102-0 . ISSN 1382-4090 .
^ Weisstein, Eric W. "Riemann Zeta Function" . mathworld.wolfram.com . Retrieved 2024-10-05 .
^ Van Gorder, Robert A. (2012). "Glaisher-Type Products over the Primes". International Journal of Number Theory . 08 (2): 543– 550. doi :10.1142/S1793042112500297 .
^ Pain, Jean-Christophe (2023-04-15). "Series representations for the logarithm of the Glaisher-Kinkelin constant". arXiv :2304.07629 [math.NT ].
^ Adamchik, V. S. (2003-08-08). "Contributions to the Theory of the Barnes Function". arXiv :math/0308086 .
^ Pain, Jean-Christophe (2024-04-22). "Two integral representations for the logarithm of the Glaisher-Kinkelin constant". arXiv :2405.05264 [math.GM ].
^ Choudhury, Bejoy K. (1995). "The Riemann Zeta-Function and Its Derivatives" . Proceedings: Mathematical and Physical Sciences . 450 (1940): 477– 499. doi :10.1098/rspa.1995.0096 . ISSN 0962-8444 . JSTOR 52768 .
^ Adamchik, Victor S. (1998-12-21). "Polygamma functions of negative order" . Journal of Computational and Applied Mathematics . 100 (2): 191– 199. doi :10.1016/S0377-0427(98)00192-7 . ISSN 0377-0427 .
External links