Monitoring (medicine)

Display device of a medical monitor as used in anesthesia
A patient of an intensive care unit in a German hospital in 2015, with a monitoring screen displaying a graphical electrocardiogram, the heart rate and blood pressure all in real time

In medicine, monitoring is the observation of a disease, condition or one or several medical parameters over time.

It can be performed by continuously measuring certain parameters by using a medical monitor (for example, by continuously measuring vital signs by a bedside monitor), and/or by repeatedly performing medical tests (such as blood glucose monitoring with a glucose meter in people with diabetes mellitus).

Transmitting data from a monitor to a distant monitoring station is known as telemetry or biotelemetry.

Classification by target parameter

Monitoring can be classified by the target of interest, including:

Vital parameters

An anesthetic machine with integrated systems for monitoring of several vital parameters, including blood pressure and heart rate

Monitoring of vital parameters can include several of the ones mentioned above, and most commonly include at least blood pressure and heart rate, and preferably also pulse oximetry and respiratory rate. Multimodal monitors that simultaneously measure and display the relevant vital parameters are commonly integrated into the bedside monitors in critical care units, and the anesthetic machines in operating rooms. These allow for continuous monitoring of a patient, with medical staff being continuously informed of the changes in general condition of a patient. Some monitors can even warn of pending fatal cardiac conditions before visible signs are noticeable to clinical staff, such as atrial fibrillation or premature ventricular contraction (PVC).

Medical monitor

A medical monitor or physiological monitor is a medical device used for monitoring. It can consist of one or more sensors, processing components, display devices (which are sometimes in themselves called "monitors"), as well as communication links for displaying or recording the results elsewhere through a monitoring network.[citation needed]

Components

Sensor

Sensors of medical monitors include biosensors and mechanical sensors. For example, photodiode is used in pulse oximetry, Pressure sensor used in Non Invasive blood pressure measurement.

Translating component

The translating component of medical monitors is responsible for converting the signals from the sensors to a format that can be shown on the display device or transferred to an external display or recording device.

Display device

Physiological data are displayed continuously on a CRT, LED or LCD screen as data channels along the time axis. They may be accompanied by numerical readouts of computed parameters on the original data, such as maximum, minimum and average values, pulse and respiratory frequencies, and so on.[citation needed]

Besides the tracings of physiological parameters along time (X axis), digital medical displays have automated numeric readouts of the peak and/or average parameters displayed on the screen.

Modern medical display devices commonly use digital signal processing (DSP), which has the advantages of miniaturization, portability, and multi-parameter displays that can track many different vital signs at once.[citation needed]

Old analog patient displays, in contrast, were based on oscilloscopes, and had one channel only, usually reserved for electrocardiographic monitoring (ECG). Therefore, medical monitors tended to be highly specialized. One monitor would track a patient's blood pressure, while another would measure pulse oximetry, another the ECG. Later analog models had a second or third channel displayed on the same screen, usually to monitor respiration movements and blood pressure. These machines were widely used and saved many lives, but they had several restrictions, including sensitivity to electrical interference, base level fluctuations and absence of numeric readouts and alarms.[citation needed]

Several models of multi-parameter monitors are networkable, i.e., they can send their output to a central ICU monitoring station, where a single staff member can observe and respond to several bedside monitors simultaneously. Ambulatory telemetry can also be achieved by portable, battery-operated models which are carried by the patient and which transmit their data via a wireless data connection.

Digital monitoring has created the possibility, which is being fully developed, of integrating the physiological data from the patient monitoring networks into the emerging hospital electronic health record and digital charting systems, using appropriate health care standards which have been developed for this purpose by organizations such as IEEE and HL7. This newer method of charting patient data reduces the likelihood of human documentation error and will eventually reduce overall paper consumption. In addition, automated ECG interpretation incorporates diagnostic codes automatically into the charts. Medical monitor's embedded software can take care of the data coding according to these standards and send messages to the medical records application, which decodes them and incorporates the data into the adequate fields.

Long-distance connectivity can avail for telemedicine, which involves provision of clinical health care at a distance.

Other components

A medical monitor can also have the function to produce an alarm (such as using audible signals) to alert the staff when certain criteria are set, such as when some parameter exceeds of falls the level limits.

Mobile appliances

An entirely new scope is opened with mobile carried monitors, even such in sub-skin carriage. This class of monitors delivers information gathered in body-area networking (BAN) to e.g. smart phones and implemented autonomous agents.

Interpretation of monitored parameters

Monitoring of clinical parameters is primarily intended to detect changes (or absence of changes) in the clinical status of an individual. For example, the parameter of oxygen saturation is usually monitored to detect changes in respiratory capability of an individual.

Change in status versus test variability

When monitoring a clinical parameters, differences between test results (or values of a continuously monitored parameter after a time interval) can reflect either (or both) an actual change in the status of the condition or a test-retest variability of the test method.

In practice, the possibility that a difference is due to test-retest variability can almost certainly be excluded if the difference is larger than a predefined "critical difference". This "critical difference" (CD) is calculated as:[2]

, where:[2]

  • K, is a factor dependent on the preferred probability level. Usually, it is set at 2.77, which reflects a 95% prediction interval, in which case there is less than 5% probability that a test result would become higher or lower than the critical difference by test-retest variability in the absence of other factors.
  • CVa is the analytical variation
  • CVi is the intra-individual variability

For example, if a patient has a hemoglobin level of 100 g/L, the analytical variation (CVa) is 1.8% and the intra-individual variability CVi is 2.2%, then the critical difference is 8.1 g/L. Thus, for changes of less than 8 g/L since a previous test, the possibility that the change is completely caused by test-retest variability may need to be considered in addition to considering effects of, for example, diseases or treatments.

Critical differences for some blood tests[2]
Sodium 3%
Potassium 14%
Chloride 4%
Urea 30%
Creatinine 14%
Calcium 5%
Albumin 8%
Fasting glucose 15%
Amylase 30%
Carcinoembryonic antigen 69%
C-reactive protein 43%[3]
Glycated hemoglobin 21%
Hemoglobin 8%
Erythrocytes 10%
Leukocytes 32%
Platelets 25%
Unless otherwise specified, then reference for critical values is Fraser 1989[2]

Critical differences for other tests include early morning urinary albumin concentration, with a critical difference of 40%.[2]

Delta check

In a clinical laboratory, a delta check is a laboratory quality control method that compares a current test result with previous test results of the same person, and detects whether there is a substantial difference, as can be defined as a critical difference as per previous section, or defined by other pre-defined criteria. If the difference exceeds the pre-defined criteria, the result is reported only after manual confirmation by laboratory personnel, in order to exclude a laboratory error as a cause of the difference.[4] In order to flag samples as deviating from previously, the exact cutoff values are chosen to give a balance between sensitivity and the risk of being overwhelmed by false-positive flags.[5] This balance, in turn, depends on the different kinds of clinical situations where the cutoffs are used, and hence, different cutoffs are often used at different departments even in the same hospital.[5]

Techniques in development

The development of new techniques for monitoring is an advanced and developing field in smart medicine, biomedical-aided integrative medicine, alternative medicine, self-tailored preventive medicine and predictive medicine that emphasizes monitoring of comprehensive medical data of patients, people at risk and healthy people using advanced, smart, minimally invasive biomedical devices, biosensors, lab-on-a-chip (in the future nanomedicine[6][7] devices like nanorobots) and advanced computerized medical diagnosis and early warning tools over a short clinical interview and drug prescription.

As biomedical research, nanotechnology and nutrigenomics advances, realizing the human body's self-healing capabilities and the growing awareness of the limitations of medical intervention by chemical drugs-only approach of old school medical treatment, new researches that shows the enormous damage medications can cause,[8][9] researchers are working to fulfill the need for a comprehensive further study and personal continuous clinical monitoring of health conditions while keeping legacy medical intervention as a last resort.

In many medical problems, drugs offer temporary relief of symptoms while the root of a medical problem remains unknown without enough data of all our biological systems[10] . Our body is equipped with sub-systems for the purpose of maintaining balance and self healing functions. Intervention without sufficient data might damage those healing sub systems.[10] Monitoring medicine fills the gap to prevent diagnosis errors and can assist in future medical research by analyzing all data of many patients.

Given Imaging Capsule endoscopy

Examples and applications

The development cycle in medicine is extremely long, up to 20 years, because of the need for U.S. Food and Drug Administration (FDA) approvals, therefore many of monitoring medicine solutions are not available today in conventional medicine.

The PASCAL Dynamic Contour Tonometer. A monitor for detection of increased intraocular pressure.
Blood glucose monitoring
In vivo blood glucose monitoring devices can transmit data to a computer that can assist with daily life suggestions for lifestyle or nutrition and with the physician can make suggestions for further study in people who are at risk and help prevent diabetes mellitus type 2 .[11]
Stress monitoring
Bio sensors may provide warnings when stress levels signs are rising before human can notice it and provide alerts and suggestions.[12] Deep neural network models using photoplethysmography imaging (PPGI) data from mobile cameras can assess stress levels with a high degree of accuracy (86%).[13]
Serotonin biosensor
Future serotonin biosensors may assist with mood disorders and depression.[14]
Continuous blood test based nutrition
In the field of evidence-based nutrition, a lab-on-a-chip implant that can run 24/7 blood tests may provide a continuous results and a computer can provide nutrition suggestions or alerts.
Psychiatrist-on-a-chip
In clinical brain sciences drug delivery and in vivo Bio-MEMS based biosensors may assist with preventing and early treatment of mental disorders
Epilepsy monitoring
In epilepsy, next generations of long-term video-EEG monitoring may predict epileptic seizure and prevent them with changes of daily life activity like sleep, stress, nutrition and mood management.[15]
Toxicity monitoring
Smart biosensors may detect toxic materials such mercury and lead and provide alerts.[16]

Minimum standards of monitoring

Minimum acceptable monitoring

1. Clinical observation (one-to-one) 2. Pulse oximetry 3. Non-invasive blood pressure 4. ECG 5. Core temperature 6. End-tidal carbon dioxide (if tracheal tube or supraglottic airway device in situ)

Additional monitoring which should be immediately available

1. Blood/capillary glucose 2. Nerve stimulator

Additional monitoring which should be available

1. Urine output 2. Invasive pressure monitoring (arterial line, central venous pressure) 3. Cardiac output monitoring 4. Access to haematological and biochemical investigations

Essential Monitoring

Presence of the anaesthetist throughout anaesthesia

A. Induction and maintenance of anaesthesia

1. Pulse oximeter 2. Non-invasive blood pressure monitoring 3. Inspired and expired oxygen, carbon dioxide, nitrous oxide and vapour 4. Airway pressure 5. A nerve stimulator whenever a muscle relaxant is used 6. Temperature (pre-op) and for any procedure >30 min anaesthesia duration

B. Recovery from anaesthesia

1. Pulse oximeter 2. Non-invasive blood pressure monitor 3. Electrocardiograph 4. Capnograph if the patient has a tracheal tube or supraglottic airway device in situ, or is deeply sedated 5. Temperature

C. Additional monitoring

1. Some patients will require additional monitoring: e.g. intravascular pressures, cardiac output. 2. Depth of anaesthesia monitors recommended when patients are anaesthetised with total intravenous techniques.

D. Regional techniques & sedation for operative procedures

1. Pulse oximeter 2. Non-invasive blood pressure monitoring 3. Electrocardiograph 4. End-tidal carbon dioxide monitor if the patient is sedated.[17]

See also

References

  1. ^ Pachmann, Katharina; Camara, Oumar; Kohlhase, Annika; Rabenstein, Carola; Kroll, Torsten; Runnebaum, Ingo B.; Hoeffken, Klaus (2010-08-08). "Assessing the efficacy of targeted therapy using circulating epithelial tumor cells (CETC): the example of SERM therapy monitoring as a unique tool to individualize therapy". Journal of Cancer Research and Clinical Oncology. 137 (5): 821–828. doi:10.1007/s00432-010-0942-4. ISSN 0171-5216. PMC 3074080. PMID 20694797.
  2. ^ a b c d e Fraser, C. G.; Fogarty, Y. (1989). "Interpreting laboratory results". BMJ (Clinical Research Ed.). 298 (6689): 1659–1660. doi:10.1136/bmj.298.6689.1659. PMC 1836738. PMID 2503170.
  3. ^ C‐reactive protein (serum, plasma) from The Association for Clinical Biochemistry and Laboratory Medicine. Author: Brona Roberts. Copyrighted 2012
  4. ^ Park SH, Kim SY, Lee W, Chun S, Min WK (2012). "New decision criteria for selecting delta check methods based on the ratio of the delta difference to the width of the reference range can be generally applicable for each clinical chemistry test item". Ann Lab Med. 32 (5): 345–54. doi:10.3343/alm.2012.32.5.345. PMC 3427822. PMID 22950070.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ a b Thomas Kampfrath (2017-08-01). "Delta Checks Checkup: Optimizing cutoffs with lab-specific inputs". American Association for Clinical Chemistry .
  6. ^ "Healthcare 2030: disease-free life with home monitoring nanomedince". Positivefuturist.com.
  7. ^ "Nanosensors for Medical Monitoring". Technologyreview.com. Archived from the original on 2012-01-31. Retrieved 2011-08-22.
  8. ^ "Brain Damage Caused by Neuroleptic Psychiatric Drugs". Mindfreedom.org. 2007-09-15.
  9. ^ "Medications That Can Cause Nerve Damage". Livestrong.com.
  10. ^ a b Hyman, Mark (December 2008). The UltraMind Solution: Fix Your Broken Brain by Healing Your Body First. Scribner. ISBN 978-1-4165-4971-0.
  11. ^ Genz, Jutta; Haastert, Burkhard; Meyer, Gabriele; Steckelberg, Anke; Müller, Hardy; Verheyen, Frank; Cole, Dennis; Rathmann, Wolfgang; Nowotny, Bettina; Roden, Michael; Giani, Guido; Mielck, Andreas; Ohmann, Christian; Icks, Andrea (2010). "Blood glucose testing and primary prevention of diabetes mellitus type 2 - evaluation of the effect of evidence based patient information". BMC Public Health. 10: 15. doi:10.1186/1471-2458-10-15. PMC 2819991. PMID 20074337.
  12. ^ Jovanov, E.; Lords, A. O.; Raskovic, D.; Cox, P. G.; Adhami, R.; Andrasik, F. (2003). ""Stress monitoring using a distributed wireless intelligent sensor system"" (PDF). IEEE Engineering in Medicine and Biology Magazine. 22 (3). IEEE: 49–55. doi:10.1109/MEMB.2003.1213626. PMID 12845819. S2CID 902182. Archived from the original (PDF) on 2020-07-30.
  13. ^ Al-Jebrni, Abdulrhman H.; Chwyl, Brendan; Wang, Xiao Yu; Wong, Alexander; Saab, Bechara J. (May 2020). "AI-enabled remote and objective quantification of stress at scale". Biomedical Signal Processing and Control. 59: 101929. doi:10.1016/j.bspc.2020.101929.
  14. ^ HUANG YJ; MARUYAMA Y; Lu, K. S.; PEREIRA E; PLONSKY I; BAUR JE; Wu, D.; ROPER SD (2005). "Using Biosensors to Detect the Release of Serotonin from Taste Buds During Taste Stimulation". Archives Italiennes de Biologie. 143 (2): 87–96. PMC 3712826. PMID 16106989.
  15. ^ Kamel JT, Christensen B, Odell MS, D'Souza WJ, Cook MJ (December 2010). "Evaluating the use of prolonged video-EEG monitoring to assess future seizure risk and fitness to drive". Epilepsy Behav. 19 (4): 608–11. doi:10.1016/j.yebeh.2010.09.026. PMID 21035403. S2CID 44834010.
  16. ^ Karasinski, Jason; Sadik, Omowunmi; Andreescu, Silvana (2006). "Multiarray Biosensors for Toxicity Monitoring and Bacterial Pathogens". Smart Biosensor Technology. Optical Science and Engineering. Vol. 20065381. CRC. pp. 521–538. doi:10.1201/9781420019506.ch19. ISBN 978-0-8493-3759-8.
  17. ^ Thompson, Jonathan P.; Moppett, Iain K.; Wiles, Matt, eds. (2019). Smith and Aitkenhead's textbook of anaesthesia (Seventh ed.). Edinburgh: Elsevier. ISBN 978-0-7020-7500-1. OCLC 1091648161.

Further reading

  • Monitoring Level of Consciousness During Anesthesia & Sedation , Scott D. Kelley, M.D., ISBN 978-0-9740696-0-9
  • Healthcare Sensor Networks: Challenges Toward Practical Implementation, Daniel Tze Huei Lai (Editor), Marimuthu Palaniswami (Editor), Rezaul Begg (Editor), ISBN 978-1-4398-2181-7
  • Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics (Contemporary Cardiology), William B. White, ISBN 978-0-89603-840-0
  • Physiological Monitoring and Instrument Diagnosis in Perinatal and Neonatal Medicine, Yves W. Brans, William W. Hay Jr, ISBN 978-0-521-41951-2
  • Medical Nanotechnology and Nanomedicine (Perspectives in Nanotechnology), Harry F. Tibbals, ISBN 978-1-4398-0874-0

Read other articles:

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6] 得…

مجموعة دول أوروبا الغربية ودول أخرى     تعديل مصدري - تعديل   الدول الأعضاء والمراقبة في مجموعة دول أوروبا الغربية ودول أخرى مجموعة دول أوروبا الغربية ودول أخرى هي إحدى المجموعات الإقليمية غير الرسمية الخمس في الأمم المتحدة التي تعمل كتكتلات للتصويت ومنتديات للتفاوض.…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助讀…

Racing White Daring MolenbeekCalcio Les Coalisés Segni distintiviUniformi di gara Casa Trasferta Colori sociali Rosso, nero, bianco Dati societariCittàBruxelles Nazione Belgio ConfederazioneUEFA Federazione URBSFA/KBVB Fondazione1909 Scioglimento2002StadioStadio Edmond Machtens(12 266 posti) PalmarèsTitoli nazionali1 campionato belga Si invita a seguire il modello di voce Il Racing White Daring Molenbeek, meglio noto come RWD Molenbeek o anche con l'acronimo RWDM, fu una società ca…

British pop punk band Boston ManorBoston Manor live @Rock am Ring 2022Background informationOriginBlackpool, Lancashire, EnglandGenres Emo pop[1] pop punk[2] punk rock[3] Years active2013–presentLabelsSharpTone, Pure NoiseMembers Henry Cox Mike Cunniff Ash Wilson Dan Cunniff Jordan Pugh Websitebostonmanorband.com Boston Manor are a British rock band formed in Blackpool, Lancashire, England, in March 2013. They released a first EP, Here/Now, through Never Mend Records on…

American multinational private equity corporation The Carlyle Group Inc.Company typePublicTraded asNasdaq: CGS&P 400 componentIndustryPrivate equityFounded1987; 37 years ago (1987)FoundersWilliam E. Conway Jr.Stephen L. NorrisDaniel A. D'AnielloDavid RubensteinGreg RosenbaumHeadquarters1001 Pennsylvania Avenue, Washington, D.C., U.S.Key peopleHarvey Schwartz (CEO)Daniel A. D'Aniello (chairman emeritus)William E. Conway Jr. (co-chairman)David Rubenstein (co-chairman)Pro…

Universitas Anhui安徽大学Didirikan1928PresidenCheng Hua (程桦)Staf akademik1522Staf administrasi2500Jumlah mahasiswa26,690Sarjana21,338Magister5,352LokasiHefei, Anhui, ChinaKampus磬苑校区, 龙河校区 (2,143,116 square meters)Nama julukan安大, āndàSitus webwww.ahu.edu.cn View of Anhui University's main campus from inside the South Gate. Qingyuan Campus Universitas Anhui (Hanzi sederhana: 安徽大学; Hanzi tradisional: 安徽大學; Pinyin: ānhuī dàxué), sering di…

County in New York, United States Not to be confused with Rockland, New York. County in New YorkRockland CountyCountyThe Hudson River looking southward from Hook Mountain State Park FlagSealLocation within the U.S. state of New YorkNew York's location within the U.S.Coordinates: 41°09′N 74°02′W / 41.15°N 74.03°W / 41.15; -74.03Country United StatesState New YorkFoundedFebruary 23, 1798; 226 years ago (1798-02-23)[2]Named forIts …

Japanese war mallet This article is about the Japanese weapon. For the town in Iwate Prefecture, see Ōtsuchi, Iwate. In this Kunisada print, Horibe Yasubei holds a large mallet. An ōtsuchi (大槌, lit. large hammer or mallet) is a large wooden war mallet used by the samurai class of feudal Japan. The ōtsuchi had a shaft of about 6 ft (182.88 cm) much like the ono (war axe).[1] It was mainly used for door breaching.[2][3] References ^ Samurai: The Weapons and Spirit of…

Sur Departamento 1864-1886 Localización del departamento del Sur en el Estado Soberano de Antioquia hacia 1865Capital SalaminaEntidad Departamento • País Estados Unidos de Colombia • Estado Estado Soberano de AntioquiaIdioma oficial CastellanoPoblación hist.    • 1876[1]​ est. 62 614 hab. • 1885[2]​ est. 60 883 hab.Religión Libertad de cultoMoneda Peso colombianoPeríodo histórico siglo XIX • 23 de agostode 1864 Cr…

LVTP-5 LVTP-5类型兩棲裝甲運兵車原产地 美国服役记录服役期间1952-参与战争/衝突1958年黎巴嫩危機越戰生产历史研发者博格華納研发日期1950-1951制造数量1124基本规格重量37.4公噸长度9.04公尺宽度3.57公尺高度2.92公尺操作人数3+34 乘員装甲6-16公厘的鋼質裝甲主武器M1919A4機槍(A、A1)、白朗寧M2重機槍(A1與其他款式)、M240通用機槍(LVTH-6)、M49 24倍徑105mm榴彈炮(LVTH-6)、工蜂四型(LVTP-5-RL…

Device For the Rotary Machine Switching System telephone exchange, see rotary system. This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Rotary switch – news · newspapers · books · scholar · JSTOR (February 2024) This article includes a list of references, related reading, or external links, but its sour…

Campagna di Chattanoogaparte della guerra di secessione americanaLa 3° e risolutiva Battaglia di Chattanooga in un'illustrazione d'epoca.Data21 settembre - 25 novembre 1863[1] LuogoChattanooga EsitoVittoria dell'Unione. Eliminazione dell'ultima roccaforte confederata nel Tennessee Apertura all'invasione del profondo Sud che avrebbe condotto alla Campagna di Atlanta del 1864. Schieramenti Stati Uniti d'America Stati Confederati d'America ComandantiWilliam Starke Rosecrans George H. Thoma…

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article relatif à la religion doit être recyclé (mars 2019). Une réorganisation et une clarification du contenu paraissent nécessaires. Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en utilisant {{section à recycler}}. Christogramme entouré par la prière du cœur en roumain : Doamne Iisuse Hristoase, Fiul lui Dumnezeu, miluieşte-mă pe mine păcătosul, soit…

Disambiguazione – Se stai cercando l'omonima famiglia patrizia veneziana, vedi Pesaro (famiglia). Pesarocomune Pesaro – Veduta LocalizzazioneStato Italia Regione Marche Provincia Pesaro e Urbino AmministrazioneSindacoAndrea Biancani (PD) dal 10-6-2024 TerritorioCoordinate43°54′36.54″N 12°54′47.88″E43°54′36.54″N, 12°54′47.88″E (Pesaro) Altitudine11 m s.l.m. Superficie126,77 km² Abitanti95 537[4] (30-4-2024) Densità75…

Questa voce sull'argomento atleti giamaicani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Natasha MorrisonNatasha Morrison nel 2015Nazionalità Giamaica Atletica leggera SpecialitàVelocità Record 100 m 1085 (2023) CarrieraSocietà MVP Track & Field Club Palmarès Competizione Ori Argenti Bronzi Giochi olimpici 1 0 0 Mondiali 2 1 1 World Relays 1 2 0 Giochi del Commonwealth 0 1 0 Giochi CAC 1 …

此生者传记条目需要补充更多可供查證的来源。 (2023年4月30日)请协助補充可靠来源,无法查证的在世人物内容将被立即移除。 丁立人摄于2023年国际象棋世界冠军赛期间國籍 中华人民共和国出生 (1992-10-24) 1992年10月24日(31歲) 中国浙江省温州市頭銜国际象棋特级大师(2009年)[1]世界冠軍2023年—國際棋聯等级分2757 (2024年7月)最高等級分2816(2018年11月)排名第3…

Richard Knopper Knopper bermain untuk Den Haag pada 2009Informasi pribadiTanggal lahir 29 Agustus 1977 (umur 46)Tempat lahir Rijswijk, BelandaTinggi 1,77 m (5 ft 9+1⁄2 in)Posisi bermain Gelandang serangKarier junior1984–1988 RVC Rijswijk1988–1993 Feyenoord1993–1997 AjaxKarier senior*Tahun Tim Tampil (Gol)1997–2004 Ajax 67 (19)2002–2003 → Aris (pinjaman) 21 (1)2003–2004 → Heerenveen (pinjaman) 32 (9)2004–2006 Vitesse 47 (8)2006–2010 Den Haag 85 (17)20…

Scaphopoda TaksonomiSuperkerajaanHolozoaKerajaanAnimaliaFilumMolluscaKelasScaphopoda Bronn, 1862 Ordo Dentaliida Gadilida Scaphopoda adalah hewan dari anggota hewan tak bertulang belakang yang termasuk dalam filum Mollusca.[1] Contoh dari Scaphopoda adalah Dentalium vulgare. Hewan ini hidup di laut atau di pantai yang berlumpur, cangkangnya tajam, berbentuk taring/terompet yang kedua ujungnya terbuka karena disesuaikan dengan tempat hidupnya, yaitu di laut dan terpendam di dalam pasir/lu…

Lemony Snicket: The Unauthorized Autobiography Kulit buku edisi pertamaPengarangLemony SnicketNegaraAmerika SerikatBahasaBahasa InggrisSeriA Series of Unfortunate EventsGenreNovel biografi fiksiPenerbitHarperCollins Egmont Publishing (UK)Tanggal terbit1 Mei 2002 (AS) Agustus 2002 3 September 2007 (UK)Jenis mediaPrint (Hardback & Paperback)Halaman218 ppISBNISBN ISBN 978-0-06-000719-5 (first edition, hardback) Invalid ISBN Lemony Snicket: The Unauthorized Autobiography adal…