Markov additive processIn applied probability, a Markov additive process (MAP) is a bivariate Markov process where the future states depends only on one of the variables.[1] DefinitionFinite or countable state space for J(t)The process is a Markov additive process with continuous time parameter t if[1]
The state space of the process is R × S where X(t) takes real values and J(t) takes values in some countable set S. General state space for J(t)For the case where J(t) takes a more general state space the evolution of X(t) is governed by J(t) in the sense that for any f and g we require[2]
ExampleA fluid queue is a Markov additive process where J(t) is a continuous-time Markov chain[clarification needed][example needed]. Applications
Çinlar uses the unique structure of the MAP to prove that, given a gamma process with a shape parameter that is a function of Brownian motion, the resulting lifetime is distributed according to the Weibull distribution. Kharoufeh presents a compact transform expression for the failure distribution for wear processes of a component degrading according to a Markovian environment inducing state-dependent continuous linear wear by using the properties of a MAP and assuming the wear process to be temporally homogeneous and that the environmental process has a finite state space. Notes
|