Of a stochastic process
This article is about infinitesimal generator for general stochastic processes. For generators for the special case of finite-state continuous time Markov chains, see
transition rate matrix.
In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is a Fourier multiplier operator[1] that encodes a great deal of information about the process.
The generator is used in evolution equations such as the Kolmogorov backward equation, which describes the evolution of statistics of the process; its L2 Hermitian adjoint is used in evolution equations such as the Fokker–Planck equation, also known as Kolmogorov forward equation, which describes the evolution of the probability density functions of the process.
The Kolmogorov forward equation in the notation is just , where is the probability density function, and is the adjoint of the infinitesimal generator of the underlying stochastic process. The Klein–Kramers equation is a special case of that.
Definition
General case
For a Feller process with Feller semigroup and state space we define the generator[1] by
Here denotes the Banach space of continuous functions on vanishing at infinity, equipped with the supremum norm, and . In general, it is not easy to describe the domain of the Feller generator. However, the Feller generator is always closed and densely defined. If is -valued and contains the test functions (compactly supported smooth functions) then[1]
where , and is a Lévy triplet for fixed .
Lévy processes
The generator of Lévy semigroup is of the form
where is positive semidefinite and is a Lévy measure satisfying
and for some with is bounded. If we define
for then the generator can be written as
where denotes the Fourier transform. So the generator of a Lévy process (or semigroup) is a Fourier multiplier operator with symbol .
Stochastic differential equations driven by Lévy processes
Let be a Lévy process with symbol (see above). Let be locally Lipschitz and bounded. The solution of the SDE exists for each deterministic initial condition and yields a Feller process with symbol
Note that in general, the solution of an SDE driven by a Feller process which is not Lévy might fail to be Feller or even Markovian.
As a simple example consider with a Brownian motion driving noise. If we assume are Lipschitz and of linear growth, then for each deterministic initial condition there exists a unique solution, which is Feller with symbol
Mean first passage time
The mean first passage time satisfies . This can be used to calculate, for example, the time it takes for a Brownian motion particle in a box to hit the boundary of the box, or the time it takes for a Brownian motion particle in a potential well to escape the well. Under certain assumptions, the escape time satisfies the Arrhenius equation.[2]
Generators of some common processes
For finite-state continuous time Markov chains the generator may be expressed as a transition rate matrix.
The general n-dimensional diffusion process has generatorwhere is the diffusion matrix, is the Hessian of the function , and is the matrix trace. Its adjoint operator is[2]The following are commonly used special cases for the general n-dimensional diffusion process.
- Standard Brownian motion on , which satisfies the stochastic differential equation , has generator , where denotes the Laplace operator.
- The two-dimensional process satisfying: where is a one-dimensional Brownian motion, can be thought of as the graph of that Brownian motion, and has generator:
- The Ornstein–Uhlenbeck process on , which satisfies the stochastic differential equation , has generator:
- Similarly, the graph of the Ornstein–Uhlenbeck process has generator:
- A geometric Brownian motion on , which satisfies the stochastic differential equation , has generator:
See also
References