MINERνA

MINERνA
Underside of the front of the MINERνA neutrino detector in 2011. The names of experiment contributors are handwritten on the front of the detector.
Location(s)Fermilab, Illinois
Coordinates41°50′23″N 88°16′13″W / 41.83972°N 88.27031°W / 41.83972; -88.27031 Edit this at Wikidata
Telescope styleexperiment
neutrino detector Edit this on Wikidata
Websitehttps://minerva.fnal.gov
MINERνA is located in Earth
MINERνA
Location of MINERνA

Main Injector Experiment for ν-A, or MINERνA, is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. MINERνA seeks to measure low energy neutrino interactions both in support of neutrino oscillation experiments and also to study the strong dynamics of the nucleon and nucleus that affect these interactions.[1]

Name

MINERvA's name combines several things. "MI" stands for the Main Injector, a Fermilab accelerator that provides high-energy protons which are targeted to create the neutrino beam. "NER" comes from "Neutrino ExpeRiment." The conventional symbol for the neutrino is the Greek letter nu, which resembles a lowercase "v". Finally, "A" represents the mass number of the target material. MINERvA studies neutrino interactions with several materials, in particular helium, carbon, iron or lead, each having a different value of A.

Physicists describe these interactions where a neutrino collides with a nucleus as a "nu-A interaction," but spell MINERvA with a Roman "v" and pronounce it with a "v". The name also evokes Minerva, the Roman goddess of wisdom.[2]

Status

The experiment that became MINERvA was proposed to Fermilab by two separate groups in 2002.[3] MINERvA's detector was assembled 107 meters underground, in a portion of the same hall that housed the Near Detector of the MINOS experiment. The first detector module was completed in early 2006,[1] and the first events were observed by the partially assembled detector in April 2009.[4][5] MINERvA started taking data regularly in November 2009 with a partially complete detector, and started taking data with the full detector in March 2010.[6]

At times, the NuMI beamline would provide either neutrino or antineutrino beams, tuned to particular energies. MINERvA acquired data in both a low energy (peaked at ~2.5 GeV) tune and a medium energy (peaked at ~6 GeV) tune.[7] The physics run was completed in February 2019.[3] Years of data analysis have followed.

Approximately 65 scientists collaborate on MINERvA.[8] As of the end of 2022, 51 students had earned their Ph.D.s for MINERvA-related work, and 32 students had earned Master's Degrees. The scientific co-spokespersons of the MINERvA experiment are Prof. Richard Gran of University of Minnesota Duluth and Prof. Deborah Harris of York University. Past spokespeople have been Prof. Laura Fields of University of Notre Dame, Prof. Kevin McFarland of University of Rochester, and Jorge Morfin of Fermilab[3]

Detector

Diagram of neutrino detector in the MINERvA experiment. Left, front view of a single detector module. Right, elevation view of complete detector.

The detector used for the MINERνA experiment is made of many layers of parallel scintillator strips.[9] Each strip is connected to a photomultiplier tube which is used to detect the amount of energy deposited into the strip. The orientation of the strips varies from layer to layer so that three-dimensional information about where particles interact with the strip can be determined. The detector consists of a middle region, the active tracker, which is made of just the scintillator strips, and is surrounded by scintillator strips interspersed with lead and iron absorbers to provide surrounding calorimetry. Upstream of the active tracker is a nuclear target region of scintillator strips in which passive targets of liquid helium, carbon, water, iron, and lead are interspersed in order to allow comparisons of interactions of neutrinos in different materials.[10]

Scientific Results

MINERvA has published results on a wide variety of topics related to neutrino interactions and on other aspects of accelerator neutrino experiments.

Neutrino Flux Measurements

In order to measure neutrino interaction probabilities, MINERvA has needed to precisely understand the flux of incoming neutrinos. Through techniques such as studying the precisely predicted but rare interactions of neutrinos on atomic electrons,[11][12][13][14] improving the simulation of the production of neutrinos in the beamline,[15][16] and studying the most elastic interactions of neutrinos,[17] MINERvA has been able to predict its flux with a fractional uncertainty of approximately 4%.[14] MINERvA's techniques provide a proof of principle for applications expected to result in higher precision in future experiments.[18]

Charged-Current Quasielastic-like Reactions

MINERvA has extensively studied charged-current quasielastic-like reactions. In such reactions, one or more nucleons are knocked out of a nucleus by a neutrino as the muon neutrino or muon antineutrino is transformed into a muon or antimuon. MINERvA's first scientific results measured the rate of these processes in correlation with the visible energy from knocked-out protons. They suggested that about 20% of the quasielastic-like rate on carbon was from events in which multiple nucleons were ejected.[19][20] This technique—correlating the observed muon either with the total observed energy,[21][22][23][24][25] or with an individual proton [26][27][28][29] or neutron[30][31]—has allowed MINERvA to infer the rate of these multinucleon processes and also to measure details of the momentum and energy of the target nucleon before it is struck.[32]

Production of Pions and Kaons

MINERvA has also measured production of charged and neutral pions in both neutrino and antineutrino scattering.[33][34][35][36][37][38][39] One of the main conclusions of that work is that the production of pions from nuclei appears to be suppressed in low-momentum transfer reactions.[40] MINERvA has also precisely measured a rare process, coherent pion production, which involves scattering off the entire nucleus, leaving it intact.[41][42][43][44]

MINERvA has studied production of charged kaons,[45][46][47] a process that is an important background to searches for proton decay. MINERvA was also the first experiment to observe coherent kaon production.[48]

Nuclear Dependence of Neutrino Interactions

MINERvA has used its passive nuclear targets to compare reactions on different nuclei in inclusive scattering and in deep inelastic scattering.[49][50] Work in pre-publication form as of 2022 has expanded these comparisons to include quasielastic scattering [51] and charged pion production.[52]

This recent data provides evidence that the low-momentum transfer suppression of the reaction occurs in many nuclei. They show the effect of intranuclear rescattering increasing as expected in heavier nuclei.

Interactions of Electron Neutrinos compared to Muon Neutrinos

Using the 1% contamination of electron neutrinos in the neutrino beam, MINERvA has measured quasielastic-like scattering of electron neutrinos.[53] Differences between muon neutrino and electron neutrino interactions would significantly impact present and future oscillation measurements.[54] In making these measurements, a surprising number of events with neutral pions and little else visible in the detector were found. These were attributed to a larger than expected rate of coherent production of these neutral pions from hydrogen.[55][56]

Data Preservation and Release

MINERvA is designing a general release of its data with a software package to allow anyone to analyze this preserved data.[57]

Neutrino communication

On March 14, 2012, MINERνA submitted a preprint demonstrating communication using neutrinos. Though not a part of the experiment's physics program, this is the first reported instance of a message being transmitted by neutrinos. Scientists used ASCII code to represent the word "neutrino" as a series of 1s and 0s. Over a period of 6 minutes, this sequence was delivered by either the presence (1) or absence (0) of a neutrino pulse, over a distance of about a kilometer. The data communication speed was 0.1 bit per second, with an error rate of 1%.[58][59][60]

References

  1. ^ a b MINERνA home page Archived 2007-10-06 at the Wayback Machine, retrieved 5 Oct 2007
  2. ^ Michelle Mo (2016-09-08). "Providing precise neutrino measurements with MINERvA". Fermilab. Retrieved 2023-01-24.
  3. ^ a b c Buongiorno, Caitlyn (April 5, 2019). "MINERvA Successfully Completes Its Physics Run". {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Wisniewski, Rhianna (2009-04-03). "MINERvA opens eyes to neutrino data". Fermilab Today. Archived from the original on 2011-06-09. Retrieved 2010-06-11.
  5. ^ "MINERvA Sees!". MINERvA at Fermilab. 2009-04-01. Archived from the original on 2010-05-27. Retrieved 2010-06-11.
  6. ^ "Intensity Frontier". Fermilab. 2010-03-24. Archived from the original on 2010-05-28. Retrieved 2010-06-11.
  7. ^ Aliaga Soplin, Leonidas (March 2016). "Neutrino Flux Prediction for the NuMI Beamline" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  8. ^ "Collaboration". MINERvA Collaboration. Retrieved 2023-01-24.
  9. ^ "Fermilab Today". Archived from the original on 2011-06-09. Retrieved 2011-02-09.
  10. ^ L. Aliaga; et al. (MINERvA Collaboration) (11 April 2014). "Design, calibration, and performance of the MINERvA detector". Nuclear Instruments and Methods. 743: 130–159. arXiv:1305.5199. Bibcode:2014NIMPA.743..130A. doi:10.1016/j.nima.2013.12.053. S2CID 119222851.
  11. ^ J. Park; et al. (MINERvA Collaboration) (10 June 2016). "Measurement of Neutrino Flux from Neutrino-Electron Elastic Scattering". Physical Review D. 93 (11): 112007. arXiv:1512.07699. Bibcode:2016PhRvD..93k2007P. doi:10.1103/PhysRevD.93.112007. S2CID 56027581.
  12. ^ E. Valencia; D. Jena; Nuruzzaman; et al. (MINERvA Collaboration) (5 November 2019). "Constraint of the MINERvA medium energy neutrino flux using neutrino-electron elastic scattering". Physical Review D. 100 (1): 092001. arXiv:1906.00111. Bibcode:2019PhRvD.100i2001V. doi:10.1103/PhysRevD.100.092001. S2CID 173990831.
  13. ^ D. Ruterbories; et al. (MINERvA Collaboration) (23 November 2021). "Constraint of the MINERvA medium energy neutrino flux using neutrino-electron elastic scattering". Physical Review D. 104 (9): 092010. arXiv:2107.01059. doi:10.1103/PhysRevD.104.092010. S2CID 235727354.
  14. ^ a b L. Zazueta; et al. (MINERvA Collaboration) (11 January 2023). "Constraint of the MINERvA medium energy neutrino flux using neutrino-electron elastic scattering". Physical Review D. 107 (1). arXiv:2209.05540. doi:10.1103/PhysRevD.107.012001. S2CID 255799302.
  15. ^ L. Aliaga; et al. (MINERvA Collaboration) (29 November 2016). "Neutrino Flux Predictions for the NuMI Beam". Physical Review D. 94 (9): 092005. arXiv:1607.00704. Bibcode:2016PhRvD..94i2005A. doi:10.1103/PhysRevD.94.092005. S2CID 118645911.
  16. ^ L. Aliaga; et al. (MINERvA Collaboration) (15 February 2017). "Neutrino Flux Predictions for the NuMI Beam". Physical Review D. 95 (3). doi:10.1103/PhysRevD.95.039903.
  17. ^ A. Bashyal; B. Messerly; D. Rimal; et al. (MINERvA Collaboration) (31 August 2021). "Use of Neutrino Scattering Events with Low Hadronic Recoil to Inform Neutrino Flux and Detector Energy Scale". Journal of Instrumentation. 16 (P08068): P08068. arXiv:2104.05769. Bibcode:2021JInst..16P8068B. doi:10.1088/1748-0221/16/08/P08068. S2CID 233219972.
  18. ^ Chris M. Marshall; Kevin S. McFarland; Callum Wilkinson (5 February 2020). "Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment". Physical Review D. 101 (3): 032002. arXiv:1910.10996. Bibcode:2020PhRvD.101c2002M. doi:10.1103/PhysRevD.101.032002. S2CID 204852042.
  19. ^ G.A. Fiorentini; D.W. Schmitz; P.A. Rodrigues; et al. (MINERvA Collaboration) (11 July 2013). "Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Neutrino Energy ~3.5 GeV". Physical Review Letters. 111 (2): 022502. arXiv:1305.2243. doi:10.1103/PhysRevLett.111.022502. PMID 23889389. S2CID 1979136.
  20. ^ L. Fields; J. Chvojka; et al. (MINERvA Collaboration) (11 July 2013). "Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Neutrino Energy ~3.5 GeV". Physical Review Letters. 111 (2): 022501. arXiv:1305.2234. doi:10.1103/PhysRevLett.111.022501. PMID 23889388. S2CID 52798647.
  21. ^ P.A. Rodrigues; et al. (MINERvA Collaboration) (17 February 2016). "Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer". Physical Review Letters. 116 (7): 071802. arXiv:1511.05944. Bibcode:2016PhRvL.116g1802R. doi:10.1103/PhysRevLett.116.071802. PMID 26943528. S2CID 16223336.
  22. ^ P.A. Rodrigues; et al. (MINERvA Collaboration) (15 November 2018). "Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer (Addendum)". Physical Review Letters. 121 (20): 209902. doi:10.1103/PhysRevLett.121.209902. PMID 30500228. S2CID 54479742.
  23. ^ M.V. Ascencio; D. A. Andrade; I. Mahbub; et al. (MINERvA Collaboration) (1 August 2022). "Measurement of inclusive charged-current νμ scattering on hydrocarbon at ⟨Eν⟩ ~ 6 GeV with low three-momentum transfer". Physical Review D. 106 (3): 032001. arXiv:2110.13372. Bibcode:2022PhRvD.106c2001A. doi:10.1103/PhysRevD.106.032001. S2CID 251271287.
  24. ^ R. Gran; M. Betancourt; M. Elkins; P. A. Rodrigues; et al. (MINERvA Collaboration) (1 June 2018). "Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer". Physical Review Letters. 120 (22): 221805. arXiv:1803.09377. Bibcode:2018PhRvL.120v1805G. doi:10.1103/PhysRevLett.120.221805. PMID 29906174. S2CID 49219090.
  25. ^ D. Ruterbories; et al. (MINERvA Collaboration) (6 July 2022). "Simultaneous Measurement of Proton and Lepton Kinematics in Quasielasticlike Muon Neutrino-Hydrocarbon Interactions from 2 to 20 GeV". Physical Review Letters. 129 (2): 021803. arXiv:2203.08022. doi:10.1103/PhysRevLett.129.021803. PMID 35867435. S2CID 250382173.
  26. ^ T. Walton; M. Betancourt; et al. (MINERvA Collaboration) (1 April 2015). "Measurement of muon plus proton final states in νμ interactions on hydrocarbon at ⟨Eν⟩ = 4.2 GeV". Physical Review D. 91 (7): 071301. arXiv:1409.4497. Bibcode:2015PhRvD..91g1301W. doi:10.1103/PhysRevD.91.071301. S2CID 118586597.
  27. ^ Betancourt, Minerba (May 16, 2014). "A neutrino tale as told by a proton". {{cite journal}}: Cite journal requires |journal= (help)
  28. ^ X.G. Lu; M. Betancourt; T. Walton; et al. (MINERvA Collaboration) (11 July 2018). "Measurement of muon plus proton final states in νμ interactions on hydrocarbon at ⟨Eν⟩ = 4.2 GeV". Physical Review Letters. 121 (2): 022504. arXiv:1805.05486. doi:10.1103/PhysRevLett.121.022504. PMID 30085714. S2CID 51942149.
  29. ^ Lu, Xianguo (February 4, 2019). "CSI: Neutrinos Cast No Shadows". {{cite journal}}: Cite journal requires |journal= (help)
  30. ^ M. Elkins; T. Cai; J. Chaves; J. Kleykamp; et al. (MINERvA Collaboration) (5 September 2019). "Neutron measurements from antineutrino hydrocarbon reactions". Physical Review D. 100 (5): 052002. arXiv:1901.04892. Bibcode:2019PhRvD.100e2002E. doi:10.1103/PhysRevD.100.052002. S2CID 118944665.
  31. ^ Hesla, Leah (June 18, 2018). "The secret to measuring the energy of an antineutrino". {{cite journal}}: Cite journal requires |journal= (help)
  32. ^ T. Cai; X-G. Lu; L.A. Harewood; C. Wret; et al. (MINERvA Collaboration) (1 May 2020). "Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions". Physical Review D. 101 (9): 092001. arXiv:1910.08658. Bibcode:2020PhRvD.101i2001C. doi:10.1103/PhysRevD.101.092001. S2CID 204800786.
  33. ^ T. Le; J.L. Palomino; et al. (MINERvA Collaboration) (7 October 2015). "Single neutral pion production by charged-current νμ interactions on hydrocarbon at ⟨Eν⟩ = 3.6 GeV". Physics Letters B. 749: 130–136. arXiv:1503.02107. doi:10.1016/j.physletb.2015.07.039. S2CID 54211980.
  34. ^ O. Altinok; T. Le; et al. (MINERvA Collaboration) (17 October 2017). "Measurement of νμ charged-current single π0 production on hydrocarbon in the few-GeV region using MINERvA". Physical Review D. 96 (7): 072003. arXiv:1708.03723. Bibcode:2017PhRvD..96g2003A. doi:10.1103/PhysRevD.96.072003. S2CID 118886611.
  35. ^ T. Le; et al. (MINERvA Collaboration) (16 September 2019). "Measurement of νμ charged-current single π production on hydrocarbon in the few-GeV region using MINERvA". Physical Review D. 100 (5): 052008. arXiv:1906.08300. doi:10.1103/PhysRevD.100.052008.
  36. ^ B. Eberly; et al. (MINERvA Collaboration) (23 November 2015). "Charged Pion Production in νμ Interactions on Hydrocarbon at ⟨Eν⟩ = 4.0GeV". Physical Review D. 92 (9): 092008. arXiv:1406.6415. Bibcode:2015PhRvD..92i2008E. doi:10.1103/PhysRevD.92.092008. S2CID 103918019.
  37. ^ C. L. McGivern; T. Le; B. Eberly; et al. (MINERvA Collaboration) (6 September 2016). "Cross Sections for νμ and νμ induced pion production on hydrocarbon in the few-GeV region using MINERvA". Physical Review D. 94 (5): 052005. arXiv:1606.07127. doi:10.1103/PhysRevD.94.052005. S2CID 88502408.
  38. ^ McGivern, Carrie (4 February 2014). "What happens in hydrocarbon stays in hydrocarbon (sometimes)". {{cite journal}}: Cite journal requires |journal= (help)
  39. ^ Yaeggy, Barbara (8 September 2017). "Neutral-pion production at MINERvA, or how to cope with cases of mistaken identity". {{cite journal}}: Cite journal requires |journal= (help)
  40. ^ P. Stowell; L. Pickering; C. Wilkinson; C. Wret; et al. (MINERvA Collaboration) (14 October 2019). "Tuning the GENIE Pion Production Model with MINERvA Data". Physical Review D. 100 (7): 072005. arXiv:1903.01558. doi:10.1103/PhysRevD.100.072005. S2CID 102486532.
  41. ^ A. Higuera; et al. (MINERvA Collaboration) (23 December 2014). "Measurement of Coherent Production of π± in Neutrino and Antineutrino Beams on Carbon from Eν of 1.5 to 20 GeV". Physical Review Letters. 113 (26): 261802. arXiv:1409.3835. Bibcode:2014PhRvL.113z1802H. doi:10.1103/PhysRevLett.113.261802. PMID 25615308. S2CID 22876688.
  42. ^ A. Mislevic; A. Higuera; et al. (MINERvA Collaboration) (2018). "Measurement of total and differential cross sections of neutrino and antineutrino coherent π± production on carbon". Physical Review D. 97 (3): 032014. arXiv:1711.01178. Bibcode:2018PhRvD..97c2014M. doi:10.1103/PhysRevD.97.032014. S2CID 119445408.
  43. ^ Mislivec, Aaron (1 August 2014). "Pion on the break shot". {{cite journal}}: Cite journal requires |journal= (help)
  44. ^ A. Mislevic; A. Higuera; et al. (MINERvA Collaboration) (2022). "Neutrino-induced coherent π+ production in C, CH, Fe and Pb at ⟨Eν⟩ ≈ 6 GeV". arXiv:2210.01285 [hep-ex].
  45. ^ C.M. Marshall; et al. (MINERvA Collaboration) (14 July 2016). "Measurement of K+ production in charged-current νμ interactions". Physical Review D. 94 (1): 012002. arXiv:1604.03920. Bibcode:2016PhRvD..94a2002M. doi:10.1103/PhysRevD.94.012002. S2CID 85556492.
  46. ^ C.M. Marshall; et al. (MINERvA Collaboration) (7 July 2017). "Measurement of neutral-current K+ production by neutrinos using MINERvA". Physical Review Letters. 119 (1): 011802. arXiv:1611.02224. Bibcode:2017PhRvL.119a1802M. doi:10.1103/PhysRevLett.119.011802. PMID 28731762. S2CID 206293746.
  47. ^ Fine, Robert (1 February 2016). "MC Truth drops new track: kaons at MINERvA". {{cite journal}}: Cite journal requires |journal= (help)
  48. ^ Z. Wang; C.M. Marshall; et al. (MINERvA Collaboration) (5 August 2016). "First evidence of coherent K+ meson production in neutrino-nucleus scattering". Physical Review Letters. 117 (6): 061802. arXiv:1606.08890. doi:10.1103/PhysRevLett.117.061802. PMID 27541459. S2CID 206279453.
  49. ^ B.G. Tice; M. Datta; J. Mousseau; et al. (MINERvA Collaboration) (9 June 2014). "Measurement of Ratios of νμ Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2-20 GeV". Physical Review Letters. 112 (23): 231801. arXiv:1403.2103. Bibcode:2014PhRvL.112w1801T. doi:10.1103/PhysRevLett.112.231801. PMID 24972195. S2CID 21015378.
  50. ^ J. Mousseau; et al. (MINERvA Collaboration) (19 April 2016). "Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA". Physical Review D. 93 (7): 071101. arXiv:1601.06313. Bibcode:2016PhRvD..93g1101M. doi:10.1103/PhysRevD.93.071101. S2CID 119103190.
  51. ^ J. Kleykamp; et al. (MINERvA Collaboration) (2023). "Simultaneous measurement of muon neutrino quasielastic-like cross sections on CH, C, water, Fe, and Pb as a function of muon kinematics at MINERvA". arXiv:2301.02272 [hep-ex].
  52. ^ A. Bercellie; et al. (MINERvA Collaboration) (2022). "Simultaneous measurement of muon neutrino νμ charged-current single π+ production in CH, C, H2O, Fe, and Pb targets in MINERvA". arXiv:2209.07852 [hep-ex].
  53. ^ J. Wolcott; et al. (MINERvA Collaboration) (23 February 2016). "Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at ⟨Eν⟩ = 3.6 GeV". Physical Review Letters. 116 (8): 081802. arXiv:1509.05729. Bibcode:2016PhRvL.116h1802W. doi:10.1103/PhysRevLett.116.081802. PMID 26967410. S2CID 32337248.
  54. ^ O. Tomalak; Q. Chen; R.J. Hill; K.S. McFarland (8 September 2022). "QED radiative corrections for accelerator neutrinos". Nature Communications. 13 (1): 5286. arXiv:2105.07939. Bibcode:2022NatCo..13.5286T. doi:10.1038/s41467-022-32974-x. PMC 9458660. PMID 36075927. S2CID 252161567.
  55. ^ J. Wolcott; et al. (MINERvA Collaboration) (7 September 2016). "Evidence for Neutral-Current Diffractive π0 Production from Hydrogen in Neutrino Interactions on Hydrocarbon". Physical Review Letters. 117 (11): 111801. arXiv:1604.01728. Bibcode:2016PhRvL.117k1801W. doi:10.1103/PhysRevLett.117.111801. PMID 27661679. S2CID 206281539.
  56. ^ Marshall, Chris (18 September 2015). "The one-percenters and those who fake it". {{cite journal}}: Cite journal requires |journal= (help)
  57. ^ B. Messerly; R. Fine; A. Olivier; et al. (MINERvA Collaboration) (23 August 2021). "An Error Analysis Toolkit for Binned Counting Experiments". European Physical Journal Web of Conferences. 251: 03046. arXiv:2103.08677. Bibcode:2021EPJWC.25103046M. doi:10.1051/epjconf/202125103046. S2CID 232240348.
  58. ^ "Message Encoded in Neutrino Beam Transmitted through Solid Rock". Scientific American. 2012-03-16. Archived from the original on 2012-03-20. Retrieved 2012-03-16.
  59. ^ "Neutrino-based communication is a first". Physics World. 2012-03-19. Archived from the original on 2020-04-18. Retrieved 2020-05-17.
  60. ^ Stancil, D. D.; Adamson, P.; Alania, M.; Aliaga, L.; Andrews, M.; Araujo Del Castillo, C.; Bagby, L.; Bazo Alba, J. L.; Bodek, A.; Boehnlein, D.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Caicedo, D. A. M.; Capista, D. P.; Castromonte, C. M.; Chamorro, A.; Charlton, E.; Christy, M. E.; Chvojka, J.; Conrow, P. D.; Danko, I.; Day, M.; Devan, J.; Downey, J. M.; Dytman, S. A.; Eberly, B.; Fein, J. R.; Felix, J.; et al. (2012-03-14). "Demonstration of Communication Using Neutrinos". Modern Physics Letters A. 27 (12): 1250077-1–1250077-10. arXiv:1203.2847. Bibcode:2012MPLA...2750077S. doi:10.1142/S0217732312500770. S2CID 119237711.

Read other articles:

American telecommunications and cable company BroadstripeCompany typeSubsidiaryIndustryTelecommunicationsFounded1998HeadquartersMillersville, MD[1]ProductsCable television, Broadband internet, VoIPParentWOW!Websitehttp://www.broadstripe.com Broadstripe is a telecommunications and cable company owned by WideOpenWest and Anne Arundel Broadband, with WideOpenWest holding a majority stake in the company.[2] Serving communities in Maryland, Broadstripe serves residential customers wit…

Political system of Greenland This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Politics of Greenland – news · newspapers · books · scholar · JSTOR (November 2008) (Learn how and when to remove this message) Politics of Greenland Constitution Constitution Act of Succession Freedom of Speech and the Press Taxation…

Information about current events For other uses, see News (disambiguation). Current Events redirects here. For the music album, see Current Events (album). For the page on Wikipedia about current events, see Portal:Current events. A girl holding The Washington Post newspaper about the first Moon landing – Apollo 11, July 21, 1969 Journalism News Writing style Ethics code of ethics Culture Objectivity News values Attribution Defamation Sensationalism Editorial independence Journalism school Ind…

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі орг…

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗帜…

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (January 2023) (Learn how and when to remove this message) You can help expand this article with text translated from the corresponding article in Russian. (December 2022) Click [show] for important translation instruct…

Lists of Israelis   By ethnicity Israeli Jews: Ashkenazi JewsEthiopian JewsMizrahi and Sephardi Jews Arab citizens of Israel: Arab Muslims, Druze, Arab Christians Various: Circassians By descent Afghan, Algerian, American, Argentine, Armenian, Australian, Austrian Belarusian, Belgian, Bosnian, Brazilian, British, Bulgarian Canadian, Chilean, Chinese, Croatian, Czech Danish, Dutch Egyptian, Estonian, Ethiopian Finnish, French Georgian, German, Greek, Guatemalan Hungarian Indian, Iranian, Ira…

First edition(publ. New American Library) Red-Dirt Marijuana and Other Tastes (ISBN 0-8065-1167-2) is a collection of short fiction and essays works by satirical novelist and screenwriter Terry Southern, which was first published in 1967. It consists of twenty-four pieces which were originally published in Esquire magazine, Evergreen Review, Harper's Bazaar, Hasty Papers, Nugget, The Paris Review, and The Realist. It was re-published in 1990 with a new introduction by George Plimpton. A fil…

17th US national census Seventeenth censusof the United States ← 1940 April 1, 1950 1960 → U.S. Census Bureau seal1950 U.S. census logoGeneral informationCountryUnited StatesResultsTotal population158,804,396 ( 14.5%)Most populous ​stateNew York15,830,192Least populous ​stateNevada160,083 The 1950 United States census, conducted by the Census Bureau, determined the resident population of the United States to be 158,804,396, an increase of 14.…

L'orologio biologico circadiano corredato da alcuni parametri fisiologici. La cronobiologia, dal greco χρόνος chrónos ‘tempo’ e da biologia (‘studio della vita’), è una branca della biologia che studia i fenomeni periodici (ciclici) negli organismi viventi e il loro adattamento ai relativi ritmi solare e lunare.[1] Questi cicli sono noti come ritmi biologici. I termini correlati cronomica e cronoma sono stati utilizzati in alcuni casi per descrivere sia i meccanismi molec…

American politician and businessman (1929–2023) Skip BafalisBafalis in 1968Member of the U.S. House of Representativesfrom Florida's 10th districtIn officeJanuary 3, 1973 – January 3, 1983Preceded byJ. Herbert BurkeSucceeded byAndy IrelandMember of the Florida Senatefrom the 33rd districtIn office1966–1970Preceded byIrlo Bronson Sr.[1]Succeeded byPhilip D. LewisState Representative from Palm Beach, FloridaIn office1964–1966 Personal detailsBornLouis Arthur Ba…

Public university in Denton, Texas, US This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: University of North Texas – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) University of North TexasFormer names Former name list Texas Normal College and Teacher Train…

علم إيطاليا   ألوان أخضر أبيض أحمر  الاعتماد 19 يونيو 1946 الاختصاص إيطاليا  سنة الاعتماد 1 يناير 1948 تعديل مصدري - تعديل   أعتمد علم جمهورية إيطاليا بشكله الحالي في 19 حزيران - يونيو من سنة 1946 وأعتمد رسميا في 1 كانون الثاني - يناير من سنة 1948 والعلم الإيطالي مستوحى من العلم ا…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. CODE-V adalah sebuah grup vokal laki-laki Korea Selatan. Code V awalnya bernama BLESS. Grup vokal dari CODE M Agency ini lahir di tahun 2011 dan terdiri dari 4 anggota. Sebetulnya BLESS sudah diumumkan ke public pada tahun 2007 dan memiliki 5 anggota. Tah…

La Oración a la Bandera Salvadoreña, escrita en 1916 por el doctor David Joaquín Guzmán, es un símbolo patrio de El Salvador, siendo reconocido oficialmente como tal por la Asamblea Legislativa el 22 de febrero de 2001. David Joaquín Guzmán, autor de la Oración a la Bandera Salvadoreña. Fue en el año de 1916, cuando era Presidente de la República el señor Carlos Meléndez, que el doctor David Joaquín Guzmán ganó un concurso literario que fue convocado por el Ministerio de Instrucc…

باليكاسترو   تقسيم إداري البلد اليونان  [1] إحداثيات 35°11′52″N 26°15′17″E / 35.19777778°N 26.25472222°E / 35.19777778; 26.25472222   السكان التعداد السكاني 1024 (resident population of Greece) (2021)1092 (resident population of Greece) (2001)982 (resident population of Greece) (1991)953 (resident population of Greece) (2011)  معلومات أخرى الموقع الرسم…

USS LST-594 beached at Hollandia, New Guinea in 1944. History United States NameUSS LST-594 Ordered2 August 1943 BuilderMissouri Valley Bridge & Iron Co., Evansville, Indiana Laid down1 July 1944 Launched12 August 1944 Commissioned6 September 1944 Decommissioned21 February 1946 Stricken5 March 1947 Fate4 June 1947, Sold to the government of South Korea, fate unknown. General characteristics [1] Class and typeLST-542-class tank landing ship Displacement 1,625 t (1,599 LT) Li…

Léon Bonnat Léon Joseph Florentin Bonnat (20 Juni 1833 – 8 September 1922) merupakan seorang pelukis Prancis, Perwira Agung Légion d'honneur dan profesor Ecole des Beaux Arts. Bonnat lahir di Bayonne, tetapi dari 1846 hingga 1853 ia tinggal di Madrid, di mana ayahandanya memiliki sebuah toko buku.[1] Galeria Giotto gardant les chèvres (1850) Museum Bonnat An Egyptian Peasant Woman and Her Child (1869–1870) Metropolitan Museum of Art An Arab Sheik (skt. 1870) Museum Seni Walters F…

Literature set in an imaginary universe Fantasy book redirects here. For the 1947–1951 magazine, see Fantasy Book. For the 1981–1987 magazine, see Fantasy Book (1981 magazine). Fantasy Media Anime Art Artists Authors Comics Films Podcasts Literature Magazines Manga Publishers Light novels Television Webcomics Genre studies Creatures History Early history Magic Magic item Magic system Magician Mythopoeia‎ Tropes Fantasy worlds Campaign settings Subgenres Bangsian Children's Comedic Contempo…

American professional wrestler Road DoggJames in 2014Birth nameBrian Girard JamesBorn (1969-05-20) May 20, 1969 (age 55)[1]Marietta, Georgia, U.S.[2]Children3Parent(s)Bob Armstrong (father)RelativesScott Armstrong (brother)Brad Armstrong (brother)Steve Armstrong (brother)Professional wrestling careerRing name(s)B.G. James[2]Brian Armstrong[2]The Dark Secret[2]Jesse James[2][3]Jesse James Armstrong[4]Road Dogg[3]The Road…