Long-term impact of alcohol on the brain

The long-term impact of alcohol on the brain has become a growing area of research focus. While researchers have found that moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence,[1] excessive alcohol consumption is associated with widespread and significant brain lesions. Other data – including investigated brain-scans of 36,678 UK Biobank participants – suggest that even "light" or "moderate" consumption of alcohol by itself harms the brain, such as by reducing brain grey matter volume. This may imply that alternatives and generally aiming for lowest possible consumption could usually be the advisable approach.

Despite these physiological effects in principle, in some cases occasional moderate consumption may have ancillary benefits on the brain due to social and psychological benefits if compared to alcohol abstinence and soberness.[2]

While the extent of causation is difficult to prove, alcohol intake – even at levels often considered to be low – "is negatively associated with global brain volume measures, regional gray matter volumes, and white matter microstructure" and these associations become stronger as alcohol intake increases.[3][4][5][6]

The effects can manifest much later—mid-life Alcohol Use Disorder has been found to correlate with increased risk of severe cognitive and memory deficits in later life.[7][8] Alcohol related brain damage is not only due to the direct toxic effects of alcohol; alcohol withdrawal, nutritional deficiency, electrolyte disturbances, and liver damage are also believed to contribute to alcohol-related brain damage.[9]

Adolescent brain development

Consuming large amounts of alcohol over a period of time can impair normal brain development in humans.[10][vague] Deficits in retrieval of verbal and nonverbal information and in visuospatial functioning were evident in youths with histories of heavy drinking during early and middle adolescence.[11][12]

During adolescence critical stages of neurodevelopment occur, including remodeling and functional changes in synaptic plasticity and neuronal connectivity in different brain regions. These changes may make adolescents especially susceptible to the harmful effects of alcohol. Compared to adults, adolescents exposed to alcohol are more likely to exhibit cognitive deficits (including learning and memory dysfunction). Some of these cognitive effects, such as learning impairments, may persist into adulthood.[13]

Mechanisms of action

Neuroinflammation

Ethanol can trigger the activation of astroglial cells which can produce a proinflammatory response in the brain. Ethanol interacts with the TLR4 and IL-1RI receptors on these cells to activate intracellular signal transduction pathways. Specifically, ethanol induces the phosphorylation of IL-1R-associated kinase (IRAK), ERK1/2, stress-activated protein kinase (SAPK)/JNK, and p38 mitogen-activated protein kinase (p38 MAPK). Activation of the IRAK/MAPK pathway leads to the stimulation of the transcription factors NF-kappaB and AP-1. These transcription factors cause the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression.[14] The upregulation of these inflammatory mediators by ethanol is also associated with an increase in caspase 3 activity and a corresponding increase in cell apoptosis.[14][15] The exact mechanism by which various concentrations of ethanol either activates or inhibits TLR4/IL-1RI signaling is not currently known, though it may involve alterations in lipid raft clustering [16] or cell adhesion complexes and actin cytoskeleton organization.[17]

Changes in dopaminergic and glutamatergic signaling pathways

Intermittent ethanol treatment causes a decrease in expression of the dopamine receptor type 2 (D2R) and a decrease in phosphorylation of 2B subunit of the NMDA receptor (NMDAR2B) in the prefrontal cortex, hippocampus, nucleus accumbens, and for only D2R the striatum. It also causes changes in the acetylation of histones H3 and H4 in the prefrontal cortex, nucleus accumbens, and striatum, suggesting chromatin remodeling changes which may mediate long-term alterations. Additionally, adolescent rats pre-exposed to ethanol have higher basal levels of dopamine in the nucleus accumbens, along with a prolonged dopamine response in this area in response to a challenge dose of ethanol. Together, these results suggest that alcohol exposure during adolescence can sensitize the mesolimbic and mesocortical dopamine pathways to cause changes in dopaminergic and glutamatergic signaling, which may affect the remodeling and functions of the adolescent brain.[18] These changes are significant as alcohol’s effect on NMDARs could contribute to learning and memory dysfunction (see Effects of alcohol on memory).

Inhibition of hippocampal neurogenesis

Excessive alcohol intake (binge drinking) causes a decrease in hippocampal neurogenesis, via decreases in neural stem cell proliferation and newborn cell survival.[19][20] Alcohol decreases the number of cells in S-phase of the cell cycle, and may arrest cells in the G1 phase, thus inhibiting their proliferation.[19] Ethanol has different effects on different types of actively dividing hippocampal progenitors during their initial phases of neuronal development. Chronic alcohol exposure decreases the number of proliferating cells that are radial glia-like, preneuronal, and intermediate types, while not affecting early neuronal type cells; suggesting ethanol treatment alters the precursor cell pool. Furthermore, there is a greater decrease in differentiation and immature neurons than there is in proliferating progenitors, suggesting that the abnormal decrease in the percentage of actively dividing preneuronal progenitors results in a greater reduction in the maturation and survival of postmitotic cells.[20]

Additionally, alcohol exposure increased several markers of cell death. In these studies neural degeneration seems to be mediated by non-apoptotic pathways.[19][20] One of the proposed mechanisms for alcohol’s neurotoxicity is the production of nitric oxide (NO), yet other studies have found alcohol-induced NO production to lead to apoptosis (see Neuroinflammation section).

Transient versus stable alterations

Many negative physiologic consequences of alcoholism are reversible during abstinence. As an example, long-term chronic alcoholics suffer a variety of cognitive deficiencies.[21] However, multiyear abstinence resolves most neurocognitive deficits, except for some lingering deficits in spatial processing.[22] Nevertheless there are some frequent long-term consequences that are not reversible during abstinence. Alcohol craving (compulsive need to consume alcohol) is frequently present long-term among alcoholics.[23] Among 461 individuals who sought help for alcohol problems, followup was provided for up to 16 years.[24] By 16 years, 54% of those who tried to remain abstinent without professional help had relapsed, and 39% of those who tried to remain abstinent with help had relapsed.

Alcohol consumption can substantially impair neurobiologically-beneficial and -demanding exercise.[25]

Long-term, stable consequences of chronic hazardous alcohol use are thought to be due to stable alterations of gene expression resulting from epigenetic changes within particular regions of the brain.[26][27][28] For example, in rats exposed to alcohol for up to 5 days, there was an increase in histone 3 lysine 9 acetylation in the pronociceptin promoter in the brain amygdala complex. This acetylation is an activating mark for pronociceptin. The nociceptin/nociceptin opioid receptor system is involved in the reinforcing or conditioning effects of alcohol.[29]

Results of alcohol consumption levels[4]

References

  1. ^ Lang I, Wallace RB, Huppert FA, Melzer D (2007). "Moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence". Age and Ageing. 36 (3): 256–61. doi:10.1093/ageing/afm001. PMID 17353234. Open access icon
  2. ^ Dunbar RI, Launay J, Wlodarski R, Robertson C, Pearce E, Carney J, MacCarron P (1 June 2017). "Functional Benefits of (Modest) Alcohol Consumption". Adaptive Human Behavior and Physiology. 3 (2): 118–133. doi:10.1007/s40750-016-0058-4. ISSN 2198-7335. PMC 7010365. PMID 32104646.
  3. ^ Ramirez E. "Study: No Amount Of Drinking Alcohol Is Safe For Brain Health". Forbes. Retrieved 13 June 2021.
  4. ^ a b Topiwala A, Ebmeier KP, Maullin-Sapey T, Nichols TE (2021-05-12). "No safe level of alcohol consumption for brain health: observational cohort study of 25,378 UK Biobank participants". medRxiv 10.1101/2021.05.10.21256931v1. Available under CC BY 4.0.
  5. ^ "Sorry, wine lovers. No amount of alcohol is good for you, study says". Washington Post. Retrieved 19 April 2022.
  6. ^ Daviet R, Aydogan G, Jagannathan K, Spilka N, Koellinger PD, Kranzler HR, Nave G, Wetherill RR (4 March 2022). "Associations between alcohol consumption and gray and white matter volumes in the UK Biobank". Nature Communications. 13 (1): 1175. Bibcode:2022NatCo..13.1175D. doi:10.1038/s41467-022-28735-5. ISSN 2041-1723. PMC 8897479. PMID 35246521.
  7. ^ Caroline Cassels (July 30, 2014). "Midlife Alcohol Abuse Linked to Severe Memory Impairment". Medscape. WebMD LLC.
  8. ^ Kuźma EB, Llewellyn DJ, Langa KM, Wallace RB, Lang IA (2014). "History of Alcohol Use Disorders and Risk of Severe Cognitive Impairment: A 19-Year Prospective Cohort Study". The American Journal of Geriatric Psychiatry. 22 (10): 1047–1054. doi:10.1016/j.jagp.2014.06.001. PMC 4165640. PMID 25091517.
  9. ^ Neiman J (Oct 1998). "Alcohol as a risk factor for brain damage: neurologic aspects". Alcohol. Clin. Exp. Res. 22 (7 Suppl): 346S – 351S. doi:10.1111/j.1530-0277.1998.tb04389.x. PMID 9799959.
  10. ^ Tapert SF, Brown GG, Kindermann SS, Cheung EH, Frank LR, Brown SA (February 2001). "fMRI measurement of brain dysfunction in alcohol-dependent young women". Alcohol. Clin. Exp. Res. 25 (2): 236–45. doi:10.1111/j.1530-0277.2001.tb02204.x. PMID 11236838.
  11. ^ Squeglia LM, Jacobus J, Tapert SF (January 2009). "The influence of substance use on adolescent brain development". Clin EEG Neurosci. 40 (1): 31–8. doi:10.1177/155005940904000110. PMC 2827693. PMID 19278130.
  12. ^ Brown SA, Tapert SF, Granholm E, Delis DC (February 2000). "Neurocognitive functioning of adolescents: effects of protracted alcohol use". Alcohol. Clin. Exp. Res. 24 (2): 164–71. doi:10.1111/j.1530-0277.2000.tb04586.x. PMID 10698367.
  13. ^ Guerri C, Pascual MA (2010). "Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence". Alcohol. 44 (1): 15–26. doi:10.1016/j.alcohol.2009.10.003. PMID 20113871.
  14. ^ a b Blanco Am VS, Vallés SL, Pascual M, Guerri C (2005). "Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes". Journal of Immunology. 175 (10): 6893–6899. doi:10.4049/jimmunol.175.10.6893. PMID 16272348.
  15. ^ Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C (2007). "Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats". European Journal of Neuroscience. 25 (2): 541–550. doi:10.1111/j.1460-9568.2006.05298.x. PMID 17284196. S2CID 26318057.
  16. ^ Fernandez-Lizarbe S, Pascual M, Gascon MS, Blanco A, Guerri C (2008). "Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages". Molecular Immunology. 45 (7): 2007–2016. doi:10.1016/j.molimm.2007.10.025. PMID 18061674.
  17. ^ Guasch RM, Tomas M, Miñambres R, Valles S, Renau-Piqueras J, Guerri C (2003). "RhoA and lysophosphatidic acid are involved in the actin cytoskeleton reorganization of astrocytes exposed to ethanol". Journal of Neuroscience Research. 72 (4): 487–502. doi:10.1002/jnr.10594. hdl:10550/95175. PMID 12704810. S2CID 22182633.
  18. ^ Pascual M, Boix J, Felipo V, Guerri C (2009). "Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat". Journal of Neurochemistry. 108 (4): 920–931. doi:10.1111/j.1471-4159.2008.05835.x. PMID 19077056.
  19. ^ a b c Morris SA, Eaves DW, Smith AR, Nixon K (2009). "Alcohol inhibition of neurogenesis: A mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model". Hippocampus. 20 (5): 596–607. doi:10.1002/hipo.20665. PMC 2861155. PMID 19554644.
  20. ^ a b c Taffe MA, Kotzebue RW, Crean RD, Crawford EF, Edwards S, Mandyam CD (2010). "Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman primates". Proceedings of the National Academy of Sciences. 107 (24): 11104–11109. doi:10.1073/pnas.0912810107. PMC 2890755. PMID 20534463.
  21. ^ Oscar-Berman M, Valmas MM, Sawyer KS, Ruiz SM, Luhar RB, Gravitz ZR (2014). "Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism". Alcohol and the Nervous System. Handbook of Clinical Neurology. Vol. 125. pp. 183–210. doi:10.1016/B978-0-444-62619-6.00012-4. ISBN 9780444626196. PMC 4515358. PMID 25307576. {{cite book}}: |journal= ignored (help)
  22. ^ Fein G, Torres J, Price LJ, Di Sclafani V (September 2006). "Cognitive performance in long-term abstinent alcoholic individuals". Alcohol. Clin. Exp. Res. 30 (9): 1538–44. doi:10.1111/j.1530-0277.2006.00185.x. PMC 1868685. PMID 16930216.
  23. ^ Bottlender M, Soyka M (2004). "Impact of craving on alcohol relapse during, and 12 months following, outpatient treatment". Alcohol Alcohol. 39 (4): 357–61. doi:10.1093/alcalc/agh073. PMID 15208171.
  24. ^ Moos RH, Moos BS (February 2006). "Rates and predictors of relapse after natural and treated remission from alcohol use disorders". Addiction. 101 (2): 212–22. doi:10.1111/j.1360-0443.2006.01310.x. PMC 1976118. PMID 16445550.
  25. ^ El-Sayed MS, Ali N, Ali ZE (1 March 2005). "Interaction Between Alcohol and Exercise". Sports Medicine. 35 (3): 257–269. doi:10.2165/00007256-200535030-00005. ISSN 1179-2035. PMID 15730339. S2CID 33487248.
  26. ^ Krishnan HR, Sakharkar AJ, Teppen TL, Berkel TD, Pandey SC (2014). "The epigenetic landscape of alcoholism". Int. Rev. Neurobiol. International Review of Neurobiology. 115: 75–116. doi:10.1016/B978-0-12-801311-3.00003-2. ISBN 9780128013113. PMC 4337828. PMID 25131543.
  27. ^ Jangra A, Sriram CS, Pandey S, Choubey P, Rajput P, Saroha B, Bezbaruah BK, Lahkar M (October 2016). "Epigenetic Modifications, Alcoholic Brain and Potential Drug Targets". Ann Neurosci. 23 (4): 246–260. doi:10.1159/000449486. PMC 5075742. PMID 27780992.
  28. ^ Berkel TD, Pandey SC (April 2017). "Emerging Role of Epigenetic Mechanisms in Alcohol Addiction". Alcohol. Clin. Exp. Res. 41 (4): 666–680. doi:10.1111/acer.13338. PMC 5378655. PMID 28111764.
  29. ^ D'Addario C, Caputi FF, Ekström TJ, Di Benedetto M, Maccarrone M, Romualdi P, Candeletti S (February 2013). "Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex". J. Mol. Neurosci. 49 (2): 312–9. doi:10.1007/s12031-012-9829-y. PMID 22684622. S2CID 14013417.