Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover. Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover.
Gurkewitz, Rona; Arnstein, Bennett (1996). 3D Geometric Origami: Modular Origami Polyhedra. Dover. ISBN9780486135601.[3]Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality, 2002.[4]Beginner's Book of Modular Origami Polyhedra: The Platonic Solids, 2008. Modular Origami Polyhedra, also with Lewis Simon, 2nd ed., 1999.[5]
Mitchell, David (1997). Mathematical Origami: Geometrical Shapes by Paper Folding. Tarquin. ISBN978-1-899618-18-7.[6]
Wenninger, Magnus (1971). Polyhedron Models. Cambridge University Press. 2nd ed., Polyhedron Models for the Classroom, 1974.[11]Spherical Models, 1979.[12]Dual Models, 1983.[13]
Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. Vol. 23. National Geographic. ISBN978-84-473-8929-2.
Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press.[16]
Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press.[17]
Holden, Alan (1971). Shapes, Space and Symmetry. Dover, 1991.[18]
le Masne, Roger (2013). Les polyèdres, ou la beauté des mathématiques (in French) (4th ed.). Self-published.[19]
Miyazaki, Koji (1983). Katachi to kūkan: Tajigen sekai no kiseki (in Japanese). Wiley. Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.[20]
Lyusternik, Lazar (1956). Выпуклые фигуры и многогранники (in Russian). Gosudarstv. Izdat. Tehn.-Teor. Lit. Translated into English as Convex Figures and Polyhedra by T. Jefferson Smith, Dover, 1963 and by Donald L. Barnett, Heath, 1966.[31]
Roman, Tiberiu (1968). Reguläre und halbreguläre Polyeder [Regular and semiregular polyhedra] (in German). VEB Deutscher Verlag der Wissenschaften.[32]
Coxeter, H. S. M.; du Val, P.; Flather, H. T.; Petrie, J. F. (1938). The Fifty-Nine Icosahedra. University of Toronto Studies, Mathematical Series. Vol. 6. University of Toronto Press. 2nd ed., Springer, 1982. 3rd ed., Tarquin, 1999.[35]
Coxeter, H. S. M. (1974). Regular Complex Polytopes. Cambridge University Press. 2nd ed., 1991.[36]
McMullen, Peter (2020). Geometric Regular Polytopes. Encyclopedia of Mathematics and its Applications. Vol. 172. Cambridge University Press.[40]
McMullen, Peter; Schulte, Egon (2002). Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications. Vol. 92. Cambridge University Press.[41]
McMullen, Peter; Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series. Vol. 3. Cambridge University Press.[42]
Nef, Walter (1978). Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik [Contributions to the theory of the polyhedron, with applications in computer graphics] (in German). Herbert Lang.[43]
Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Vol. 21. Hindustan Book Agency.[44]
Wu, Wen-tsün (1965). A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press.[48]
Zalgaller, Viktor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau. Translated and corrected from Zalgaller, V. A. (1967). Выпуклые многогранники с правильными гранями. Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI) (in Russian). Vol. 2. Nauka.[49]
Zhizhin, Gennadiy Vladimirovich (2022). The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems. Advances in Chemical and Materials Engineering. IGI Global. ISBN9781799883760.
Edited volumes
Avis, David; Bremner, David; Deza, Antoine, eds. (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. Vol. 48. American Mathematical Society.
Gabriel, Jean-François, ed. (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley.[50]
Kalai, Gil; Ziegler, Günter M., eds. (2012). Polytopes - Combinatorics and Computation. DMV Seminar. Vol. 29. Springer.
Senechal, Marjorie; Fleck, G., eds. (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN0-8176-3351-0. 2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.[51]
History
Early works
Listed in chronological order, and including some works shorter than book length:
Cowley, John Lodge (1758). An Appendix to Euclid's Elements in Seven Books, Containing Forty-two Copper-plates, In Which the Doctrine of Solids, Delivered in the XIth, XIIth, and XVth Books of Euclid, is Illustrated by New-invented Schemes Cut Out of Paste-Board. Watkins.
Poinsot, Louis (1810). Mémoire sur les polygones et sur les polyèdres (in French).
Marie, François-Charles-Michel (1835). Géométrie stéréographique, ou reliefs des polyèdres (in French). Paris. hdl:2027/ucm.531073766x.
Catalan, Eugène (1865). "Mémoire sur la théorie des polyèdres". Journal de l'École Polytechnique (in French). 24. hdl:2268/194785.
Klein, Felix (1884). Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom 5ten Grade [Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree] (in German).
Fedorov, E. S. (1885). Начала учения о фигурах [Introduction to the Theory of Figures] (in Russian).[54]
Steinitz, Ernst (1934). Rademacher, Hans (ed.). Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie (in German).
Books about historical topics
Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press.[56]
Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo.[57]
Dézarnaud-Dandine, Christine; Sevin, Alain (2009). Histoire des polyèdres: Quand la nature est géomètre (in French). Vuibert.
Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London.
Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press.[60]
References
^Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School. 16 (2): 47. JSTOR30214199.
^"Science News Books". Science News. 144 (21): 335–350. November 20, 1993. JSTOR3977680. Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
^Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
Plummer, Robert (December 1996). The Mathematics Teacher. 89 (9): 782. JSTOR27970022.{{cite journal}}: CS1 maint: untitled periodical (link)
Johnston, Christopher (September 2002). Mathematics Teaching in the Middle School. 8 (1): 59, 62. JSTOR41181231.{{cite journal}}: CS1 maint: untitled periodical (link)
^Ollerton, Mike (January 1998). "Review of Mathematical Origami: Geometrical Shapes by Paper Folding". Mathematics in School. 27 (1): 47. JSTOR30211857.
Hagedorn, Thomas R. (April 2010). "Review". MAA Reviews. Mathematical Association of America.
Luck, Gary S. (March 2011). The Mathematics Teacher. 104 (7): 558. JSTOR20876948.{{cite journal}}: CS1 maint: untitled periodical (link)
Thomas, Rachel (December 2009). "Review". Plus Magazine.
^Short, Martha (March 2003). "Review of A Plethora of Polyhedra in Origami". Mathematics Teaching in the Middle School. 8 (7): 380, 382. JSTOR41181848.
Russo, F. (April–June 1978). Archives de Philosophie. 41 (2): 304–305. JSTOR43034062.{{cite journal}}: CS1 maint: untitled periodical (link)
Satzer, William J. (April 2016). "Review". MAA Reviews. Mathematical Association of America.
Schramm, Alfred (1980). "Vom Vermächtnis des Imre Lakatos". Philosophische Rundschau. 27 (1–2): 84–100. JSTOR42571468.
Toulmin, Stephen (Winter 1980). "The intellectual authority and the social context of the scientific enterprise: Holton, Rescher And Lakatos". Minerva. 18 (4): 652–667. JSTOR41820442.
^Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science. 41 (6): 513–566. doi:10.1080/00033798400200401. MR0780985.
^Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov". Structural Topology (in English and French) (10): 5–22. hdl:2099/1195. MR0768703.
^Reviews of Piero della Francesca's Mathematical Treatises:
Tormey, Judith Farr (Spring 1979). The Journal of Aesthetics and Art Criticism. 37 (3): 389–390. doi:10.2307/430812. JSTOR430812.{{cite journal}}: CS1 maint: untitled periodical (link)
Rose, Paul Lawrence (1980). Bibliothèque d'Humanisme et Renaissance. 42 (2): 487–488. JSTOR20676148.{{cite journal}}: CS1 maint: untitled periodical (link)
Maccagni, Carlo (1979). Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia (Serie III). 9 (4): 1909–1911. JSTOR24305449.{{cite journal}}: CS1 maint: untitled periodical (link)