List of books about polyhedra

This is a list of books about polyhedra.

Polyhedral models

Cut-out kits

  • Jenkins, Gerald; Bear, Magdalen (1998). Paper Polyhedra in Colour. Tarquin. ISBN 1-899618-23-6. Advanced Polyhedra 1: The Final Stellation, ISBN 1-899618-61-9. Advanced Polyhedra 2: The Sixth Stellation, ISBN 1-899618-62-7. Advanced Polyhedra 3: The Compound of Five Cubes, ISBN 978-1-899618-63-7.[1]
  • Jenkins, Gerald; Wild, Anne (2000). Mathematical Curiosities. Tarquin. ISBN 1-899618-35-X. More Mathematical Curiosities, Tarquin, ISBN 1-899618-36-8. Make Shapes 1, ISBN 0-906212-00-6. Make Shapes 2, ISBN 0-906212-01-4.
  • Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover. Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
  • Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover.

Origami

Other model-making

Mathematical studies

Introductory level and general audience

  • Akiyama, Jin; Matsunaga, Kiyoko (2024). Treks into Intuitive Geometry: The World of Polygons and Polyhedra (2nd ed.). Singapore: Springer. ISBN 978-981-99-8607-1.[14]
  • Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. Vol. 23. National Geographic. ISBN 978-84-473-8929-2.
  • Britton, Jill (2001). Polyhedra Pastimes. Dale Seymour Publishing. ISBN 0-7690-2782-2.[15]
  • Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press.[16]
  • Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press.[17]
  • Holden, Alan (1971). Shapes, Space and Symmetry. Dover, 1991.[18]
  • le Masne, Roger (2013). Les polyèdres, ou la beauté des mathématiques (in French) (4th ed.). Self-published.[19]
  • Miyazaki, Koji (1983). Katachi to kūkan: Tajigen sekai no kiseki (in Japanese). Wiley. Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.[20]
  • Pearce, Peter; Pearce, Susan (1979). Polyhedra Primer. Van Nostrand Reinhold. ISBN 978-0-442-26496-3.[21]
  • Pugh, Anthony (1976). Polyhedra: A Visual Approach. University of California Press.[22]
  • Radin, Dan (2008). The Platonic Solids Book. Self-published.[23]
  • Sutton, Daud (2002). Platonic & Archimedean Solids: The Geometry of Space. Wooden Books. ISBN 978-0802713865.[24]

Textbooks

Monographs and special topics

Edited volumes

  • Avis, David; Bremner, David; Deza, Antoine, eds. (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. Vol. 48. American Mathematical Society.
  • Gabriel, Jean-François, ed. (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley.[50]
  • Kalai, Gil; Ziegler, Günter M., eds. (2012). Polytopes - Combinatorics and Computation. DMV Seminar. Vol. 29. Springer.
  • Senechal, Marjorie; Fleck, G., eds. (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN 0-8176-3351-0. 2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.[51]

History

Early works

Listed in chronological order, and including some works shorter than book length:

Books about historical topics

  • Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press.[56]
  • Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo.[57]
  • Dézarnaud-Dandine, Christine; Sevin, Alain (2009). Histoire des polyèdres: Quand la nature est géomètre (in French). Vuibert.
  • Federico, Pasquale Joseph (1984). Descartes on Polyhedra: A Study of the "De solidorum elementis". Sources in the History of Mathematics and Physical Sciences. Vol. 4. Springer.[58]
  • Richeson, D. S. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.[59]
  • Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London.
  • Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press.[60]

References

  1. ^ Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School. 16 (2): 47. JSTOR 30214199.
  2. ^ "Science News Books". Science News. 144 (21): 335–350. November 20, 1993. JSTOR 3977680. Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
  3. ^ Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
  4. ^ Reviews of Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality:
    • Murphey, Bonnie (January 2004). Mathematics Teaching in the Middle School. 9 (5): 288. JSTOR 41181919.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Kessler, Charlotte (January 2004). The Mathematics Teacher. 97 (1): 78. JSTOR 20871510.{{cite journal}}: CS1 maint: untitled periodical (link)
  5. ^ Reviews of Modular Origami Polyhedra (2nd ed.):
  6. ^ Ollerton, Mike (January 1998). "Review of Mathematical Origami: Geometrical Shapes by Paper Folding". Mathematics in School. 27 (1): 47. JSTOR 30211857.
  7. ^ Reviews of Origami Polyhedra Design:
    • Hagedorn, Thomas R. (April 2010). "Review". MAA Reviews. Mathematical Association of America.
    • Luck, Gary S. (March 2011). The Mathematics Teacher. 104 (7): 558. JSTOR 20876948.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Thomas, Rachel (December 2009). "Review". Plus Magazine.
  8. ^ Short, Martha (March 2003). "Review of A Plethora of Polyhedra in Origami". Mathematics Teaching in the Middle School. 8 (7): 380, 382. JSTOR 41181848.
  9. ^ Reviews of Mathematical Models:
  10. ^ Reviews of Build Your Own Polyhedra:
  11. ^ Reviews of Polyhedron Models:
  12. ^ Reviews of Spherical Models:
  13. ^ Reviews of Dual Models:
  14. ^ Reviews of Treks into Intuitive Geometry: The World of Polygons and Polyhedra (1st ed.):
  15. ^ Callahan, Deborah D. (September 2002). "Review of Polyhedra Pastimes". Mathematics Teaching in the Middle School. 8 (1): 64. JSTOR 41181235.
  16. ^ Reviews of Polyhedra:
  17. ^ Hayek, Linda M. (April 1994). "Review of The Platonic Solids Activity Book". The Mathematics Teacher. 87 (4): 298. JSTOR 27968850.
  18. ^ Reviews of Shapes, Space and Symmetry:
  19. ^ Reviews of Les polyèdres:
  20. ^ Grünbaum, Branko (January–February 1988). "Review of An Adventure in Multidimensional Space". American Scientist. 76 (1): 94–95. JSTOR 27855044.
  21. ^ Reviews of Polyhedra Primer:
  22. ^ Coxeter, H. S. M. "Review of Polyhedra: A Visual Approach". Mathematical Reviews. MR 0451161.
  23. ^ Ashbacher, Charles (November 2008). "Review of The Platonic Solids Book". MAA Reviews. Mathematical Association of America.
  24. ^ Hoehn, Larry (February 2003). "Publications". The Mathematics Teacher. 96 (2): 154. doi:10.5951/MT.96.2.0154. JSTOR 20871261. Review of three books including Platonic & Archimedean Solids.
  25. ^ Reviews of Convex Polyhedra:
  26. ^ Reviews of Computing the Continuous Discretely:
  27. ^ Reviews of An Introduction to Convex Polytopes:
  28. ^ Reviews of Regular Polytopes:
  29. ^ Reviews of Regular Figures:
  30. ^ Reviews of Convex Polytopes:
  31. ^ Reviews of Convex Figures and Polyhedra:
  32. ^ Jucovič, E. "Review of Reguläre und halbreguläre Polyeder". MathSciNet (in German). MR 0248605.
  33. ^ Reviews of Lectures in Geometric Combinatorics:
  34. ^ Reviews of Lectures on Polytopes:
  35. ^ Reviews of The Fifty-Nine Icosahedra:
  36. ^ Reviews of Regular Complex Polytopes:
  37. ^ Reviews of Geometric Folding Algorithms:
  38. ^ Reviews of Scale-Isometric Polytopal Graphs:
  39. ^ Reviews of Proofs and Refutations:
  40. ^ Review of Geometric Regular Polytopes:
  41. ^ Reviews of Abstract Regular Polytopes:
  42. ^ Reviews of Convex Polytopes and the Upper Bound Conjecture:
  43. ^ Hertel, E. "Review of Beiträge zur Theorie der Polyeder". MathSciNet (in German). MR 0500548.
  44. ^ Reviews of Convex Polyhedra with Regularity Conditions and Hilbert’s Third Problem:
  45. ^ Reviews of Realization Spaces of Polytopes:
  46. ^ Reviews of Adventures Among the Toroids:
  47. ^ Wenninger, Magnus J. (Spring 1976). "Review of Infinite Polyhedra". Leonardo. 9 (2): 158. doi:10.2307/1573140. JSTOR 1573140.
  48. ^ Reviews of A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space:
  49. ^ Review of Convex Polyhedra with Regular Faces:
  50. ^ Chilton, J. C. (April 2000). "Review of Beyond the Cube". Journal of the International Association for Shell and Spatial Structures. 41 (1): 132.
  51. ^ Reviews of Shaping Space:
  52. ^ Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science. 41 (6): 513–566. doi:10.1080/00033798400200401. MR 0780985.
  53. ^ Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. Vol. 59. Birkhäuser. p. 71. doi:10.1007/978-3-319-72487-4. ISBN 978-3-319-72486-7.
  54. ^ Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov". Structural Topology (in English and French) (10): 5–22. hdl:2099/1195. MR 0768703.
  55. ^ Schönflies, A. M. "Review of Zur Morphologie der Polyeder". Jahrbuch über die Fortschritte der Mathematik (in German). JFM 23.0544.03.
  56. ^ Reviews of The Polyhedrists:
  57. ^ Reviews of Piero della Francesca's Mathematical Treatises:
    • Tormey, Judith Farr (Spring 1979). The Journal of Aesthetics and Art Criticism. 37 (3): 389–390. doi:10.2307/430812. JSTOR 430812.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Rose, Paul Lawrence (1980). Bibliothèque d'Humanisme et Renaissance. 42 (2): 487–488. JSTOR 20676148.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Maccagni, Carlo (1979). Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia (Serie III). 9 (4): 1909–1911. JSTOR 24305449.{{cite journal}}: CS1 maint: untitled periodical (link)
  58. ^ Reviews of Descartes on Polyhedra:
  59. ^ Reviews of Euler's Gem:
  60. ^ Prudence, Paul. "David Wade's 'Fantastic Geometry' – The Works of Wenzel Jamnitzer & Lorenz Stoer". Dataisnature.