Brückner is known for making many geometric models, particularly of stellated and uniform polyhedra, which he documented in his book Vielecke und Vielflache: Theorie und Geschichte (Polygons and polyhedra: Theory and History, Leipzig: B. G. Teubner, 1900).[3][4] The shapes first studied in this book include the final stellation of the icosahedron and the compound of three octahedra, made famous by M. C. Escher's print Stars.[5]
Joseph Malkevitch lists the publication of this book, which documented all that was known on polyhedra at the time, as one of 25 milestones in the history of polyhedra. Malkevitch writes that the book's "beautiful pictures of uniform polyhedra ... served as an inspiration to people later".[6]
Die Elemente der vierdimensionalen Geometrie mit besonderer Berücksichtigung der Polytope, Jahresbericht des Vereins für Naturkunde zu Zwickau 1893
Vielecke und Vielflache – Theorie und Geschichte, Teubner, Leipzig, 1900
Über die gleicheckig-gleichflächigen, diskontinuierlichen und nichtkonvexen Polyeder. dans: Abhandlungen der kaiserlichen leopoldinisch-carolinischen deutschen Akademie der Naturforscher, vol. 86, p. 1–348, Halle 1906.
Ueber die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope), Verhandelingen der Koninklijke Akademie van Wetenschappen, Amsterdam 1909
^Coxeter, H. S. M. (1985), "A special book review: M. C. Escher: His life and complete graphic work", The Mathematical Intelligencer, 7 (1): 59–69, doi:10.1007/BF03023010, S2CID189887063. Coxeter's analysis of Stars is on pp. 61–62.