In algebraic number theory , Leopoldt's conjecture , introduced by H.-W. Leopoldt (1962 , 1975 ), states that the p-adic regulator of a number field does not vanish. The p-adic regulator is an analogue of the usual
regulator defined using p-adic logarithms instead of the usual logarithms, introduced by H.-W. Leopoldt (1962 ).
Let K be a number field and for each prime P of K above some fixed rational prime p , let U P denote the local units at P and let U 1,P denote the subgroup of principal units in U P . Set
U
1
=
∏
P
|
p
U
1
,
P
.
{\displaystyle U_{1}=\prod _{P|p}U_{1,P}.}
Then let E 1 denote the set of global units ε that map to U 1 via the diagonal embedding of the global units in E .
Since
E
1
{\displaystyle E_{1}}
is a finite-index subgroup of the global units, it is an abelian group of rank
r
1
+
r
2
−
1
{\displaystyle r_{1}+r_{2}-1}
, where
r
1
{\displaystyle r_{1}}
is the number of real embeddings of
K
{\displaystyle K}
and
r
2
{\displaystyle r_{2}}
the number of pairs of complex embeddings. Leopoldt's conjecture states that the
Z
p
{\displaystyle \mathbb {Z} _{p}}
-module rank of the closure of
E
1
{\displaystyle E_{1}}
embedded diagonally in
U
1
{\displaystyle U_{1}}
is also
r
1
+
r
2
−
1.
{\displaystyle r_{1}+r_{2}-1.}
Leopoldt's conjecture is known in the special case where
K
{\displaystyle K}
is an abelian extension of
Q
{\displaystyle \mathbb {Q} }
or an abelian extension of an imaginary quadratic number field : Ax (1965) reduced the abelian case to a p-adic version of Baker's theorem , which was proved shortly afterwards by Brumer (1967) .
Mihăilescu (2009 , 2011 ) has announced a proof of Leopoldt's conjecture for all CM-extensions of
Q
{\displaystyle \mathbb {Q} }
.
Colmez (1988 ) expressed the residue of the p -adic Dedekind zeta function of a totally real field at s = 1 in terms of the p -adic regulator. As a consequence, Leopoldt's conjecture for those fields is equivalent to their p -adic Dedekind zeta functions having a simple pole at s = 1.
References
Ax, James (1965), "On the units of an algebraic number field" , Illinois Journal of Mathematics , 9 (4): 584– 589, doi :10.1215/ijm/1256059299 , ISSN 0019-2082 , MR 0181630 , Zbl 0132.28303
Brumer, Armand (1967), "On the units of algebraic number fields", Mathematika , 14 (2): 121– 124, doi :10.1112/S0025579300003703 , ISSN 0025-5793 , MR 0220694 , Zbl 0171.01105
Colmez, Pierre (1988), "Résidu en s=1 des fonctions zêta p-adiques", Inventiones Mathematicae , 91 (2): 371– 389, Bibcode :1988InMat..91..371C , doi :10.1007/BF01389373 , ISSN 0020-9910 , MR 0922806 , S2CID 118434651 , Zbl 0651.12010
Kolster, M. (2001) [1994], "Leopoldt's conjecture" , Encyclopedia of Mathematics , EMS Press
Leopoldt, Heinrich-Wolfgang (1962), "Zur Arithmetik in abelschen Zahlkörpern" , Journal für die reine und angewandte Mathematik , 1962 (209): 54– 71, doi :10.1515/crll.1962.209.54 , ISSN 0075-4102 , MR 0139602 , S2CID 117123955 , Zbl 0204.07101
Leopoldt, H. W. (1975), "Eine p-adische Theorie der Zetawerte II", Journal für die reine und angewandte Mathematik , 1975 (274/275): 224– 239, doi :10.1515/crll.1975.274-275.224 , S2CID 118013793 , Zbl 0309.12009 .
Mihăilescu, Preda (2009), The T and T* components of Λ - modules and Leopoldt's conjecture , arXiv :0905.1274 , Bibcode :2009arXiv0905.1274M
Mihăilescu, Preda (2011), Leopoldt's Conjecture for CM fields , arXiv :1105.4544 , Bibcode :2011arXiv1105.4544M
Neukirch, Jürgen ; Schmidt, Alexander; Wingberg, Kay (2008), Cohomology of Number Fields , Grundlehren der Mathematischen Wissenschaften , vol. 323 (Second ed.), Berlin: Springer-Verlag, ISBN 978-3-540-37888-4 , MR 2392026 , Zbl 1136.11001
Washington, Lawrence C. (1997), Introduction to Cyclotomic Fields (Second ed.), New York: Springer, ISBN 0-387-94762-0 , Zbl 0966.11047 .