Hubbard–Stratonovich transformationThe Hubbard–Stratonovich (HS) transformation is an exact mathematical transformation invented by Russian physicist Ruslan L. Stratonovich and popularized by British physicist John Hubbard. It is used to convert a particle theory into its respective field theory by linearizing the density operator in the many-body interaction term of the Hamiltonian and introducing an auxiliary scalar field. It is defined via the integral identity[1] [2] where the real constant . The basic idea of the HS transformation is to reformulate a system of particles interacting through two-body potentials into a system of independent particles interacting with a fluctuating field. The procedure is widely used in polymer physics, classical particle physics, spin glass theory, and electronic structure theory. Calculation of resulting field theoriesThe resulting field theories are well-suited for the application of effective approximation techniques, like the mean field approximation. A major difficulty arising in the simulation with such field theories is their highly oscillatory nature in case of strong interactions, which leads to the well-known numerical sign problem. The problem originates from the repulsive part of the interaction potential, which implicates the introduction of the complex factor via the HS transformation. References
|