Auxiliary fieldIn physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian describing such a field contains an algebraic quadratic term and an arbitrary linear term, while it contains no kinetic terms (derivatives of the field): The equation of motion for is and the Lagrangian becomes Auxiliary fields generally do not propagate,[1] and hence the content of any theory can remain unchanged in many circumstances by adding such fields by hand. If we have an initial Lagrangian describing a field , then the Lagrangian describing both fields is Therefore, auxiliary fields can be employed to cancel quadratic terms in in and linearize the action . Examples of auxiliary fields are the complex scalar field F in a chiral superfield,[2] the real scalar field D in a vector superfield, the scalar field B in BRST and the field in the Hubbard–Stratonovich transformation. The quantum mechanical effect of adding an auxiliary field is the same as the classical, since the path integral over such a field is Gaussian. To wit: See alsoReferences
|