Head movement in rodents upon 5-HT2A receptor activation
The head-twitch response (HTR), also sometimes known as wet dog shakes (WDS) in rats, is a rapid side-to-side head movement that occurs in mice and rats when the serotonin5-HT2A receptor is activated.[1][2]Serotonergic psychedelics, including lysergic acid diethylamide (LSD), induce the HTR, and so the HTR is widely used as an animal behavioral model of hallucinogen effects and to discover new psychedelic drugs.[1][3] HTR-like effects are also induced by psychedelics in other animal species, for instance cats and stump-tailed macaque monkeys.[1] Other related behaviors to head twitches induced by serotonergic agents include limb jerks and body scratches.[4] The only other behavioral paradigms for assessment of psychedelic-like effects in animals are drug discrimination (DD), prepulse inhibition (PPI), and time perception.[5][6]
Head twitches do not occur with psychedelics in humans[5] and head twitches lack face validity as an animal behavioral proxy of psychedelic effects.[6] In any case, it has been said that head twitches might resemble sensory disturbances during hallucinogenic experiences.[3] Despite the preceding limitations, the assay has strong predictive validity.[6] There is a good correlation between the capacity of serotonergic psychedelics to induce head twitches in rodents and their reported potency in inducing hallucinogenic effects in humans.[3][10]
There are few or no known examples of serotonergic psychedelics with hallucinogenic effects in humans that do not produce the HTR in animals.[7][11][6][4] One of the only known instances, ALD-52, could be explained by species differences in metabolism.[4][3] Other possible exceptions, including various 2C psychedelics like 2C-B, 2C-I, and 2C-D, as well as the phenylpiperazineTFMPP, may be explained by these agents having relatively low intrinsic activity at the serotonin 5-HT2A receptor and by species differences in sensitivity to HTR elicitation by serotonin 5-HT2A receptor partial agonists (mice being more sensitive than rats).[7][1] It is additionally notable that there is an inverted U-shaped dose–response curve for the HTR induced by psychedelics, making proper dosing an important factor in HTR production as well.[3][12]
The preceding findings collectively suggest that while the HTR can be a useful indicator as to whether a compound is likely to display hallucinogenic activity in humans, the induction of the HTR does not necessarily mean that a compound will be hallucinogenic.[16] In relation to this, caution should be exercised when interpreting such results.[16]
While the serotonin 5-HT2A receptor mediates the HTR, other serotonin receptors, including the serotonin 5-HT1A and 5-HT2C receptors, appear to modulate the serotonin 5-HT2A receptor-induced HTR.[1][24] Serotonin 5-HT1A receptor agonists like 8-OH-DPAT suppress the HTR.[25][8][26][27] In addition, LSM-775, which is a weakly hallucinogenic psychedelic in humans, does not induce the HTR in animals unless the serotonin 5-HT1A receptor is blocked with WAY-100635, suggesting that serotonin 5-HT1A receptor activation masks its psychedelic-like effects.[25][28] The serotonin 5-HT1A receptor agonist buspirone has been reported to suppress the hallucinogenic effects of serotonergic psychedelics in humans, while the serotonin 5-HT1A receptor antagonist pindolol has been reported to markedly potentiate them.[29][28][30][31]
Serotonin 5-HT2C receptor agonists, for instance Ro 60-0175, CP-809,101, and meta-chlorophenylpiperazine (mCPP), have been reported to suppress the HTR, while serotonin 5-HT2C receptor antagonists, like SB-242084, have been reported to potentiate the HTR.[7] However, in some studies, serotonin 5-HT2C receptor inactivation, by antagonism with SB-242084 or SB-206553 or by receptor knockout, has been reported to diminish the HTR.[7] The reasons for these contradictory findings are unclear.[7] In any case, animal strain differences have been suggested.[7] In addition, the influence of serotonin 5-HT2C receptor signaling on the HTR may be bimodal, with a more recent study finding that the serotonin 5-HT2C receptor antagonist RS-102221 enhanced the HTR at lower doses but inhibited it at higher doses.[26]
The HTR assay can be very laborious and time-consuming to conduct as it required manual observation.[7] However, semi- and fully-automated forms of the assay, allowing for the possibility of high-throughput screening, have more recently been developed.[7][33][34][35][36][37][38][39]
History
The HTR was first described as an effect induced by LSD in 1956.[1][40][6][41][42] Subsequently, it was described as an effect of large doses of 5-HTP in 1963.[4][6][43] In 1967, Corne and Pickering proposed the HTR as a behavioral predictor of hallucinogenic effects in humans.[13] Mediation of the HTR induced by psychedelics like mescaline was proposed in 1982.[7]
^ abcdeNakagawasai O, Arai Y, Satoh SE, Satoh N, Neda M, Hozumi M, et al. (January 2004). "Monoamine oxidase and head-twitch response in mice. Mechanisms of alpha-methylated substrate derivatives". Neurotoxicology. 25 (1–2): 223–232. Bibcode:2004NeuTx..25..223N. doi:10.1016/S0161-813X(03)00101-3. PMID14697897.
^Willins DL, Meltzer HY (August 1997). "Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats". The Journal of Pharmacology and Experimental Therapeutics. 282 (2): 699–706. PMID9262333.
^ abcdeCorne SJ, Pickering RW (1967). "A possible correlation between drug-induced hallucinations in man and a behavioural response in mice". Psychopharmacologia. 11 (1): 65–78. doi:10.1007/BF00401509. PMID5302272.
^Dunlap, Lee E. (2022). Development of Non-Hallucinogenic Psychoplastogens (Thesis). University of California, Davis. Retrieved 18 November 2024. Finally, since R-MDMA is known to partially substitute for LSD in animal models we decided to test both compounds in the head twitch response assay (HTR) (FIG 3.3C).3 The HTR is a well-validated mouse model for predicting the hallucinogenic potential of test drugs. Serotonergic psychedelics will cause a rapid back and forth head movement in mice. The potency measured in the HTR assay has been shown to correlate very well with the human potencies of psychedelics.18 Neither R-MDMA or LED produced any head twitches at all doses tested, suggesting that neither has high hallucinogenic potential.
^ abDuan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chem Rev. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID38033123.
^Gumpper RH, Nichols DE (October 2024). "Chemistry/structural biology of psychedelic drugs and their receptor(s)". Br J Pharmacol. doi:10.1111/bph.17361. PMID39354889.
^ abcSchmid CL, Bohn LM (2018). "βArrestins: Ligand-Directed Regulators of 5-HT2A Receptor Trafficking and Signaling Events". 5-HT2A Receptors in the Central Nervous System. Cham: Springer International Publishing. pp. 31–55. doi:10.1007/978-3-319-70474-6_2. ISBN978-3-319-70472-2. Centrally expressed receptors were implicated by the fact that the systemic injection of serotonin, which is not brain penetrant, does not induce the head twitch response [109, 110], yet head twitches are induced by the direct injection of serotonin into the intracerebroventricular (i.c.v.) space [66, 120, 121].
^ abSchmid CL, Bohn LM (October 2010). "Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a β-arrestin2/Src/Akt signaling complex in vivo". J Neurosci. 30 (40): 13513–24. doi:10.1523/JNEUROSCI.1665-10.2010. PMC3001293. PMID20926677. Serotonin and 5-hydroxy-L-tryptophan (5-HTP) induce a head-twitch response in wild-type (WT) mice that is a behavioral proxy for 5-HT2AR activation. The response in β-arrestin2 knock-out (βarr2-KO) mice is greatly attenuated until the doses are elevated, at which point, βarr2-KO mice display a head-twitch response that can exceed that of WT mice. Direct administration of N-methyltryptamines also produces a greater response in βarr2-KO mice. Moreover, the inhibition of N-methyltransferase blocks 5-HTP-induced head twitches in βarr2-KO mice, indicating that N-methyltryptamines, rather than serotonin, primarily mediate this response.
^ abHalberstadt, Adam L.; Nichols, David E. (2020). "Serotonin and serotonin receptors in hallucinogen action". Handbook of Behavioral Neuroscience. Vol. 31. Elsevier. pp. 843–863. doi:10.1016/b978-0-444-64125-0.00043-8. ISBN978-0-444-64125-0.
^Glatfelter GC, Clark AA, Cavalco NG, Landavazo A, Partilla JS, Naeem M, Golen JA, Chadeayne AR, Manke DR, Blough BE, McCorvy JD, Baumann MH (December 2024). "Serotonin 1A Receptors Modulate Serotonin 2A Receptor-Mediated Behavioral Effects of 5-Methoxy-N,N-dimethyltryptamine Analogs in Mice". ACS Chem Neurosci. doi:10.1021/acschemneuro.4c00513. PMID39636099.
^ abBrandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J, Stratford A, Klein LM, McCorvy JD, Nichols DE, Halberstadt AL (February 2018). "Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775)". Drug Test Anal. 10 (2): 310–322. doi:10.1002/dta.2222. PMC6230476. PMID28585392. Additionally, pretreatment with the 5‐HT1A agonist buspirone (20 mg p.o.) markedly attenuates the visual effects of psilocybin in human volunteers.59 Although buspirone failed to completely block the hallucinogenic effects of psilocybin, the limited inhibition is not necessarily surprising because buspirone is a low efficacy 5‐HT1A partial agonist.60 The level of 5‐HT1A activation produced by buspirone may not be sufficient to completely counteract the stimulation of 5‐HT2A receptors by psilocin (the active metabolite of psilocybin). Another consideration is that psilocin acts as a 5‐HT1A agonist.30 If 5‐HT1A activation by psilocin buffers its hallucinogenic effects similar to DMT58 then competition between psilocin and a weaker partial agonist such as buspirone would limit attenuation of the hallucinogenic response.
^McClure-Begley TD, Roth BL (June 2022). "The promises and perils of psychedelic pharmacology for psychiatry". Nat Rev Drug Discov. 21 (6): 463–473. doi:10.1038/s41573-022-00421-7. PMID35301459.
^Winter CA, Flataker L (June 1956). "Effects of lysergic acid diethylamide upon performance of trained rats". Proc Soc Exp Biol Med. 92 (2): 285–289. doi:10.3181/00379727-92-22453. PMID13350323.
^Keller DL, Umbreit WW (October 1956). "Permanent alteration of behavior in mice by chemical and psychological means". Science. 124 (3225): 723–724. doi:10.1126/science.124.3225.723. PMID13371313.