Fixed anvil temperature hypothesis

Anvil cloud over the Tiwi Islands, Australia

Fixed anvil temperature hypothesis is a physical hypothesis that describes the response of cloud radiative properties to rising surface temperatures. It presumes that the temperature at which radiation is emitted by anvil clouds is constrained by radiative processes and thus does not change in response to surface warming. Since the amount of radiation emitted by clouds is a function of their temperature, it implies that it does not increase with surface warming and thus a warmer surface does not increase radiation emissions (and thus cooling) by cloud tops. The mechanism has been identified both in climate models and observations of cloud behaviour, it affects how much the world heats up for each extra tonne of greenhouse gas in the atmosphere. However, some evidence suggests that it may be more correctly formulated as decreased anvil warming rather than no anvil warming.

Background and hypothesis

In the tropics, the radiative cooling of the troposphere is balanced by the release of latent heat through condensation of water vapour lofted to high altitudes by convection. The radiative cooling is mostly a consequence of emissions by water vapour and thus becomes ineffective above the 200 hPa pressure level. Congruently, it is at this elevation that thick clouds and anvil clouds – the topmost convective clouds – concentrate.[1]

The "fixed anvil temperature hypothesis" stipulates that owing to energetic and thermodynamic constraints imposed by the Clausius-Clapeyron relationship, the temperature and thus radiative cooling of anvil clouds does not change much with surface temperature.[1] Specifically, cooling decreases below −73 °C (200 K) as the ineffective radiative cooling by CO
2
becomes dominant below that temperature.[2] Instead, the elevation of high clouds rises with surface temperatures.[3]

A related hypothesis is that tropopause temperatures are insensitive to surface warming; however it appears to have distinct mechanisms from the fixed anvil temperature process.[4] They have been related to each other in several studies,[5] which sometimes find a fixed tropopause temperature a more reasonable theory than fixed anvil temperature.[6]

Evidence

The fixed anvil temperature hypothesis has been widely accepted and even extended to the non-tropical atmosphere. Its strength relies in part on its reliance on simple physical arguments.[7]

Models

The fixed anvil temperature hypothesis was initially formulated by Hartmann and Larson 2002 in the context of the NCAR/PSU MM5 climate model[8] but the stability of top cloud temperatures was already observed in a one-dimensional model by Hansen et al. 1981.[9] It has also been recovered, with limitations, in climate models[10] and in numerous general circulation models.[11] However, some have recovered a dependence on cloud size[12] and on relative humidity[13] or that the fixed anvil temperature is more properly expressed as anvil temperature changing more slowly than surface temperature.[14] Climate models also simulate an increase in cloud top height[15] and some radiative-convective models apply it to the outflow of tropical cyclones.[16]

The fixed anvil temperature hypothesis has also been obtained in simulations of exoplanet climates.[17] At very high CO
2
concentrations approaching a runaway greenhouse however, other physical effects pertaining to cloud opacity may take over and dominate the fixed anvil temperature as surface temperatures reach extreme levels.[18]

Observations

The fixed anvil temperature hypothesis has been backed by observational studies[19] for large clouds. Smaller clouds however have no stable temperature and there are temperature fluctuations of about 5 °C (9 °F)[20] which may relate to processes involving the Brewer-Dobson circulation.[13] Xu et al. 2007 found that cloud temperatures are more stable for clouds with sizes exceeding 150 kilometres (93 mi).[21] The ascent of cloud top height with warming is also supported by observations.[15]

Implications

Clouds are the second biggest uncertainty in future climate change after human actions, as their effects are complicated and not properly understood.[22] The fixed anvil temperature hypothesis has effects on global climate sensitivity, since anvil clouds are the most important source of outgoing radiation linked to tropical convection[23] and their temperature being stable would render the outgoing radiation non-responsive to surface temperature changes.[24] This creates a positive feedback component of cloud feedback.[25] The fixed anvil temperature hypothesis has also been used to argue that climate modelling should use temperature rather than pressure to model the height of high clouds.[26]

Alternative views

A hypothesis which would have the opposite effect on climate is the iris hypothesis, according to which the coverage of anvil clouds declines with warming, thus allowing more radiation to escape into space and resulting in slower warming.[27] The proportionate anvil warming hypothesis by Zelinka and Hartmann 2010 was formulated on the basis of general circulation models and envisages a small increase of anvil temperature with high warming.[28] The latter hypothesis was intended as a modification to the fixed anvil temperature hypothesis[20] and includes considerations of atmospheric stability and appears to reflect actual climate conditions more closely.[26] Finally, there is a view that cloud top temperatures could actually decrease with surface warming[29] as convection height rises. This may constitute a non-equilibrium response.[30]

Research

As of 2020 further research is needed to properly understand the physics of some cloud feedbacks,[31] as they differ between models,[32] and progress on properly modelling clouds globally is very slow.[22]

References

  1. ^ a b Hartmann & Larson 2002, p. 1.
  2. ^ Hartmann & Larson 2002, p. 3.
  3. ^ Albern, Nicole; Voigt, Aiko; Pinto, Joaquim G. (2019). "Cloud-Radiative Impact on the Regional Responses of the Midlatitude Jet Streams and Storm Tracks to Global Warming". Journal of Advances in Modeling Earth Systems. 11 (7): 1949. Bibcode:2019JAMES..11.1940A. doi:10.1029/2018MS001592. ISSN 1942-2466. S2CID 182771431.
  4. ^ Hu, Shineng; Vallis, Geoffrey K. (2019). "Meridional structure and future changes of tropopause height and temperature". Quarterly Journal of the Royal Meteorological Society. 145 (723): 2709. arXiv:1902.08230. Bibcode:2019QJRMS.145.2698H. doi:10.1002/qj.3587. ISSN 1477-870X. S2CID 118967908.
  5. ^ Sullivan, Sylvia C.; Schiro, Kathleen A.; Stubenrauch, Claudia; Gentine, Pierre (2019). "The Response of Tropical Organized Convection to El Niño Warming". Journal of Geophysical Research: Atmospheres. 124 (15): 8490. Bibcode:2019JGRD..124.8481S. doi:10.1029/2019JD031026. ISSN 2169-8996.
  6. ^ Seeley, Jeevanjee & Romps 2019, p. 1849.
  7. ^ Seeley, Jeevanjee & Romps 2019, p. 1842.
  8. ^ Hartmann & Larson 2002, p. 2.
  9. ^ Del Genio 2016, p. 107.
  10. ^ Igel, Drager & van den Heever 2014, p. 10516.
  11. ^ Maher, Penelope; Gerber, Edwin P.; Medeiros, Brian; Merlis, Timothy M.; Sherwood, Steven; Sheshadri, Aditi; Sobel, Adam H.; Vallis, Geoffrey K.; Voigt, Aiko; Zurita-Gotor, Pablo (2019). "Model Hierarchies for Understanding Atmospheric Circulation". Reviews of Geophysics. 57 (2): 267. Bibcode:2019RvGeo..57..250M. doi:10.1029/2018RG000607. hdl:10871/36644. ISSN 1944-9208. S2CID 146704580.
  12. ^ Noda et al. 2016, p. 2313.
  13. ^ a b Chae, Jung Hyo; Sherwood, Steven C. (1 January 2010). "Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region". Journal of the Atmospheric Sciences. 67 (1): 259. Bibcode:2010JAtS...67..248C. doi:10.1175/2009JAS3099.1. ISSN 0022-4928.
  14. ^ Seeley, Jeevanjee & Romps 2019, p. 1848.
  15. ^ a b Li, R. L.; Storelvmo, T.; Fedorov, A. V.; Choi, Y.-S. (15 August 2019). "A Positive Iris Feedback: Insights from Climate Simulations with Temperature-Sensitive Cloud–Rain Conversion". Journal of Climate. 32 (16): 5306. Bibcode:2019JCli...32.5305L. doi:10.1175/JCLI-D-18-0845.1. hdl:10852/83101. ISSN 0894-8755. S2CID 198420050.
  16. ^ Shi, Xiaoming; Bretherton, Christopher S. (September 2014). "Large-scale character of an atmosphere in rotating radiative-convective equilibrium". Journal of Advances in Modeling Earth Systems. 6 (3): 616. Bibcode:2014JAMES...6..616S. doi:10.1002/2014MS000342.
  17. ^ Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Merlis, Timothy; Koll, Daniel D. B.; Forget, François; Abbot, Dorian S. (April 2019). "Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison". The Astrophysical Journal. 875 (1): 11. arXiv:1912.11329. Bibcode:2019ApJ...875...46Y. doi:10.3847/1538-4357/ab09f1. ISSN 0004-637X. S2CID 146053272.
  18. ^ Ramirez, Ramses M.; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F. (August 2014). "Can Increased Atmospheric CO2 Levels Trigger a Runaway Greenhouse?". Astrobiology. 14 (8): 723. Bibcode:2014AsBio..14..714R. doi:10.1089/ast.2014.1153. ISSN 1531-1074. PMID 25061956.
  19. ^ Asrar, Ghassem R.; Hurrell, James W., eds. (2013). Climate Science for Serving Society. Dordrecht: Springer Netherlands. p. 406. doi:10.1007/978-94-007-6692-1. ISBN 978-94-007-6691-4. S2CID 131478611.
  20. ^ a b Noda et al. 2016, p. 2307.
  21. ^ Noda et al. 2016, p. 2312.
  22. ^ a b Irfan, Umair (2021-05-19). "Scientists aren't sure what will happen to clouds as the planet warms". Vox. Retrieved 2021-07-05.
  23. ^ Hartmann & Larson 2002, pp. 1–2.
  24. ^ Hartmann & Larson 2002, p. 4.
  25. ^ Del Genio 2016, p. 116.
  26. ^ a b Kluft, Lukas; Dacie, Sally; Buehler, Stefan A.; Schmidt, Hauke; Stevens, Bjorn (1 December 2019). "Re-Examining the First Climate Models: Climate Sensitivity of a Modern Radiative–Convective Equilibrium Model". Journal of Climate. 32 (23): 8121. Bibcode:2019JCli...32.8111K. doi:10.1175/JCLI-D-18-0774.1. hdl:21.11116/0000-0002-A35E-D. ISSN 0894-8755. S2CID 135038760.
  27. ^ Seeley, Jacob T.; Jeevanjee, Nadir; Langhans, Wolfgang; Romps, David M. (2019). "Formation of Tropical Anvil Clouds by Slow Evaporation". Geophysical Research Letters. 46 (1): 492. Bibcode:2019GeoRL..46..492S. doi:10.1029/2018GL080747. ISSN 1944-8007. S2CID 134486980.
  28. ^ Zelinka, Mark D.; Hartmann, Dennis L. (16 December 2011). "The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics: Temperature Sensitivity of High Clouds". Journal of Geophysical Research: Atmospheres. 116 (D23): 1. doi:10.1029/2011JD016459.
  29. ^ Igel, Drager & van den Heever 2014, p. 10530.
  30. ^ Igel, Drager & van den Heever 2014, p. 10531.
  31. ^ "Cooling effect of clouds 'underestimated' by climate models, says new study". World Economic Forum. 10 June 2021. Retrieved 2021-07-05.
  32. ^ Yoshimori, Masakazu; Lambert, F. Hugo; Webb, Mark J.; Andrews, Timothy (2020-04-01). "Fixed Anvil Temperature Feedback: Positive, Zero, or Negative?". Journal of Climate. 33 (7): 2719–2739. Bibcode:2020JCli...33.2719Y. doi:10.1175/JCLI-D-19-0108.1. hdl:10871/121112. ISSN 0894-8755.

Sources

Read other articles:

An ancient liquified sediment flow in Talara, Peru with nicely preserved dish structures. Liquefied flows (also known as liquified flows and fluidized flows) are types of sediment-gravity flows in which grains within the flow are kept in suspension by the upward movement of fluid. They form in granular substances where the concentration of suspended mud is too low to develop cohesive forces within the flow. As grains at the base of the suspension settle out, fluid that is displaced upward by the…

Book by Donald Horne For the unrelated 2009 film, see Lucky Country (film). The Lucky Country First editionAuthorDonald HorneCountryAustraliaLanguageEnglishGenreNon-fictionPublication date1964Media typePrint (hardback)Pages288ISBN978-0143180029 The Lucky Country is a 1964 book by Donald Horne. The title has become a nickname for Australia[1] and is generally used favourably, although the origin of the phrase was negative in the context of the book. Among other things, it has been us…

Laplet model designed by Compaq Compaq TC-1000TC1100 tablet - next model with same design, with HP logo instead of Compaq logo.DeveloperCompaqTypeLapletRelease date2003Operating systemWindows XP Tablet PC EditionCPUTransmeta Crusoe 5800 1.0 GHz, 512 KB CacheMemory256 MB (SDRAM)Storage30, 40, or 60 GB Hard DriveDisplay10.4 Inches 1024x768GraphicsNvidia GeForce2Go (16 MB, SDRAM)Power40 Wh Li ionDimensions10.8 in × 8.5 in × .8 in (274 mm × 216 mm × 2…

French physicist (born 1941) Pierre AgostiniAgostini in 2023Born (1941-07-23) 23 July 1941 (age 82)Tunis, French TunisiaAlma materAix-Marseille University (BEd, MAS, PhD)Known forAbove-threshold ionizationRABBITTAwardsGay-Lussac–Humboldt Prize (2003)William F. Meggers Award (2007)Nobel Prize in Physics (2023)Scientific careerFieldsAttosecond physicsInstitutionsCEA SaclayOhio State UniversityThesisAppareillage permettant la réalisation de filtres multidiélectriques UV: Étude d…

Belarusian politician and pro-democracy activist Zianon PazniakЗянон ПазнякZianon Pazniak in 2008Deputy to the Supreme Council of the Republic of BelarusIn office15 May 1990 – 28 May 1995 Personal detailsBornZianon Stanislavavič Pazniak (1944-04-24) 24 April 1944 (age 80)Subotniki, Byelorussian SSR, Soviet UnionPolitical partyConservative Christian Party – BPFSpouse Halina Vaščanka ​(m. 1995)​ChildrenNadzieja (adopted)Alma materBelarus…

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: First Battle of Tuxpan – news · newspapers · books · scholar · JSTOR (July 2015) First Battle of TuxpanPart of Mexican–American WarThe U.S. naval expedition under Commodore M. C. Perry, ascending the Tuspan River; destroying the forts, and taking posse…

U.S. military facility in New Jersey US Army Photograph of Camp Kilmer 40°31′00″N 74°26′45″W / 40.51667°N 74.44583°W / 40.51667; -74.44583 Located in Central New Jersey, Camp Kilmer is a former United States Army camp that was activated in June 1942 as a staging area and part of an installation of the New York Port of Embarkation. The camp was organized as part of the Army Service Forces Transportation Corps. Troops were quartered at Camp Kilmer in preparation…

Township in Essex County, New Jersey, US Township in New JerseyWest Orange, New JerseyTownshipGlenmont, part of the Thomas Edison National Historical Park located in Llewellyn Park FlagSealMotto: Where Invention Lives[1]Interactive map of West OrangeWest OrangeLocation in Essex CountyShow map of Essex County, New JerseyWest OrangeLocation in New JerseyShow map of New JerseyWest OrangeLocation in the United StatesShow map of the United StatesCoordinates: 40°47′09″N 74°15′54…

AmenAlbum studio karya Rich BrianDirilis2 Februari 2018Direkam2017GenreHip hop[1]Durasi44:03Label88risingEmpireProduserRich Brian (juga Eksekutif Produser)Austin PowerzBkornChannel TresCubeatzFrans MernickJ HillJoshua CrosbyRogét ChahayedWesley SingermanKronologi Rich Brian Amen(2018) The Sailor(2019) Singel dalam album Amen Glow Like DatDirilis: 15 Agustus 2017 ChaosDirilis: 5 Oktober 2017 See MeDirilis: 8 Januari 2018 ColdDirilis: 20 Februari 2018 Amen adalah album studio debut ol…

中国新疆航空China Xinjiang Airlines IATA ICAO 呼号 XO CXJ Xinjiang 創立於1985年1月1日終止运营2003年樞紐機場 中国 烏魯木齊地窩堡國際機場机队数量25总部 中国 乌鲁木齐网站www.xjair.com 新疆航空 伊尔-86 烏魯木齊地窩堡國際機場的新疆航空 波音757 中国新疆航空是一家总部位于新疆乌鲁木齐的航空公司。公司成立于1985年,2002年被中国南方航空并购。 历史 前身最初是1955年成立的…

Questa voce sull'argomento centri abitati della prefettura di Gifu è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. GujōcittàGujo-shi Gujō – Veduta LocalizzazioneStato Giappone RegioneChūbu Prefettura Gifu SottoprefetturaNon presente DistrettoNon presente TerritorioCoordinate35°44′57″N 136°57′50.3″E35°44′57″N, 136°57′50.3″E (Gujō) Superficie1 030,79 km² Abitanti46 387 (1-10-2007) Densità45 ab./km² Alt…

مارتن ساتريانو معلومات شخصية الميلاد 20 فبراير 2001 (العمر 23 سنة)مونتفيدو  الطول 1.87 م (6 قدم 1 1⁄2 بوصة) مركز اللعب مهاجم الجنسية الأوروغواي إيطاليا  معلومات النادي النادي الحالي إمبولي (معارًا من إنتر ميلان) الرقم 9 مسيرة الشباب سنوات فريق 2015–2020 ناسيونال مونتيف…

Disused railway station in Rother, East Sussex Bexhill WestGeneral informationLocationBexhill-on-Sea, Rother, East SussexEnglandGrid referenceTQ736076Platforms3Other informationStatusDisusedHistoryOriginal companyCrowhurst, Sidley and Bexhill RailwayPre-groupingSouth Eastern and Chatham RailwayPost-groupingSouthern Railway Southern Region of British RailwaysKey dates1 June 1902[1]Opened as Bexhill1 January 1917Closed1 March 1919Reopened1920Renamed Bexhill-on-Sea9 July 1923Renamed Bexhill…

سفارة أذربيجان في الولايات المتحدة أذربيجان الولايات المتحدة الإحداثيات 38°55′34″N 77°03′58″W / 38.926°N 77.0662°W / 38.926; -77.0662 البلد الولايات المتحدة  المكان شمال غربي واشنطن العاصمة الاختصاص الولايات المتحدة  الموقع الالكتروني الموقع الرسمي تعديل مصدري - تعديل   س…

داخنةمعلومات عامةصنف فرعي من volcanic phenomenon (en) شكل الأرض تعديل - تعديل مصدري - تعديل ويكي بياناتدخان الفومارول من إحدى براكين ألاسكا في 2006 صورة من طائرة لفوهة هاليماوماو (هاواي) عام 2009. الداخنة[1] (أو النافثة البركانية)[2] هو دخان يخرج من فوق القشرة الأرضية وعادةً ما يخرج قر…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2023) قلعة دنكهمعلومات عامةنوع المبنى موقع أثري المنطقة الإدارية محافظة السليمانية البلد  العراق أبرز الأحداثأحداث مهمة 2016 : حفريات[1] 2017 : حفريات[5] 20…

العلاقات المكسيكية الفيتنامية المكسيك فيتنام   المكسيك   فيتنام تعديل مصدري - تعديل   العلاقات المكسيكية الفيتنامية هي العلاقات الثنائية التي تجمع بين المكسيك وفيتنام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا…

Former Long Island Rail Road station in Queens, New York Fresh PondThe site of the former station in December 2017General informationLocationFresh Pond, Queens, New YorkU.S.Coordinates40°42′43.8″N 73°53′56.1″W / 40.712167°N 73.898917°W / 40.712167; -73.898917Owned byLong Island Rail RoadLine(s)Montauk BranchPlatforms1 side platform, 1 island platformTracks3HistoryOpenedJune 1869ClosedMarch 16, 1998RebuiltApril 1895ElectrifiedAugust 29, 1905Previous namesBushwi…

Politics of São Tomé and Príncipe Constitution Human rights LGBT rights Executive President Carlos Vila Nova Government Prime Minister Patrice Trovoada Council of Ministers Legislature National Assembly President: Jose da Graca Diogo Judiciary Supreme Court of Justice Elections Recent elections Presidential: 20162021 Legislative: 20182022 Political parties Administrative divisions Autonomous Region of Príncipe Districts Foreign relations Ministry of Foreign Affairs, Cooperation and Communiti…

ملخص معلومات الملف الوصف هذه صورة لشخصية عبد الوهاب خليل المصدر (https://www.albayan.ae/polopoly_fs/1.4119782.1616168150!/image/image.jpg) التاريخ المنتج هذا الملف لا يمتلك معلومات معلومات المنتج، وربما تنقصه بعض المعلومات الأخرى. يجب أن تحتوي الملفات على معلومات موجزة حول الملف لإعلام الآخرين بالمحتوى وا…