In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought to collect all n coupons? An alternative statement is: given n coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once? The mathematical analysis of the problem reveals that the expected number of trials needed grows as .[a] For example, when n = 50 it takes about 225[b] trials on average to collect all 50 coupons.
Solution
Via generating functions
By definition of Stirling numbers of the second kind, the probability that exactly T draws are needed isBy manipulating the generating function of the Stirling numbers, we can explicitly calculate all moments of T:In general, the k-th moment is , where is the derivative operator .
For example, the 0th moment isand the 1st moment is , which can be explicitly evaluated to , etc.
Calculating the expectation
Let time T be the number of draws needed to collect all n coupons, and let ti be the time to collect the i-th coupon after i − 1 coupons have been collected. Then . Think of T and ti as random variables. Observe that the probability of collecting a new coupon is . Therefore, has geometric distribution with expectation . By the linearity of expectations we have:
The above can be modified slightly to handle the case when we've already collected some of the coupons. Let k be the number of coupons already collected, then:
And when then we get the original result.
Calculating the variance
Using the independence of random variables ti, we obtain:
A stronger tail estimate for the upper tail be obtained as follows. Let denote the event that the -th coupon was not picked in the first trials. Then
Thus, for , we have . Via a union bound over the coupons, we obtain
Extensions and generalizations
Pierre-Simon Laplace, but also Paul Erdős and Alfréd Rényi, proved the limit theorem for the distribution of T. This result is a further extension of previous bounds. A proof is found in.[1]
Donald J. Newman and Lawrence Shepp gave a generalization of the coupon collector's problem when m copies of each coupon need to be collected. Let Tm be the first time m copies of each coupon are collected. They showed that the expectation in this case satisfies:
Here m is fixed. When m = 1 we get the earlier formula for the expectation.
Common generalization, also due to Erdős and Rényi:
In the general case of a nonuniform probability distribution, according to Philippe Flajolet et al.[2]
This is equal to
where m denotes the number of coupons to be collected and PJ denotes the probability of getting any coupon in the set of coupons J.
See also
McDonald's Monopoly – an example of the coupon collector's problem that further increases the challenge by making some coupons of the set rarer
^Here and throughout this article, "log" refers to the natural logarithm rather than a logarithm to some other base. The use of Θ here invokes big O notation.
^E(50) = 50(1 + 1/2 + 1/3 + ... + 1/50) = 224.9603, the expected number of trials to collect all 50 coupons. The approximation for this expected number gives in this case .
References
^Mitzenmacher, Michael (2017). Probability and computing : randomization and probabilistic techniques in algorithms and data analysis. Eli Upfal (2nd ed.). Cambridge, United Kingdom. Theorem 5.13. ISBN978-1-107-15488-9. OCLC960841613.{{cite book}}: CS1 maint: location missing publisher (link)
Dawkins, Brian (1991), "Siobhan's problem: the coupon collector revisited", The American Statistician, 45 (1): 76–82, doi:10.2307/2685247, JSTOR2685247.