Clotiazepam has been trialed and found to be effective in the short-term management of anxiety.[9] Clotiazepam is also used as a premedicant in minor surgery in France and Japan, where the drug is commercially available under the brand names Veratran and Rize, respectively.[10][11]
Pharmacokinetics
A cross-over study in six healthy volunteers (median age 28 years) was conducted using single-dose pharmacokinetics of 5 mg clotiazepam drops, oral tablets, and sublingual tablets. The formulations had similar systemic availability. Compared with oral tablets, the sublingual route gave a lower peak concentration and a delayed peak time, while drops gave a greater maximum concentration with a similar peak time. The use of drops is suggested for a more marked initial effect and the sublingual route for easier administration, especially in the elderly.[12]
Pharmacology
Similar to other benzodiazepines clotiazepam has anxiolytic, sedative, hypnotic, amnesic, anticonvulsant and muscle relaxant pharmacological properties.[7] Clotiazepam binds to the benzodiazepine site of the GABAA receptor where it acts as a full agonist; this action results in an enhanced GABA inhibitory effect at the GABAA receptor which results in the pharmacological effects of clotiazepam.[13]
Clotiazepam has a short elimination half-life and is less prone to accumulation after repeated dosing compared to longer-acting benzodiazepine agents. It is metabolised via oxidation.[14] Clotiazepam is metabolised to hydroxy-clotiazepam and desmethyl-clotiazepam. After oral ingestion of a single 5 mg dose of clotiazepam by three healthy volunteers the drug was rapidly absorbed.[15] The elimination half-life of the drug and its metabolites range from 6.5 hours to 18 hours. Clotiazepam is 99 percent bound to plasma protein.[15] In elderly men the elimination half-life is longer and in elderly women the volume of distribution is increased.[16] Individuals with liver impairment have a reduced volume of distribution as well as a reduced total clearance of clotiazepam; renal impairment does not affect the kinetics of clotiazepam.[17]
The dose equivalent to 10 mg diazepam is thought to be between 5 and 10 mg clotiazepam.
Side effects
Side effects experienced with this product will resemble those of other benzodiazepines.
Drowsiness and asthenia are common side effects.[18] There has been a report of reversible hepatitis caused by clotiazepam.[19]
^"Clotiazépam"(PDF). HAS - Direction de l'Evaluation Médicale. Economique et de Santé Publique. 20 May 2015.
^DE 2107356, Nakanishi M, Kazuhiko A, Tetsuya T, Shiroki M, "Thieno-(2,3-E)(1,4)diazepin-2-ones", issued 3 May 1978, assigned to Yoshitomi Pharmaceutical Industries, Ltd.
^Klicpera C, Strian F (May 1978). "Autonomic perception and responses in anxiety-inducing situations". Pharmakopsychiatrie, Neuro-Psychopharmakologie. 11 (3): 113–120. doi:10.1055/s-0028-1094569. PMID27828.
^Fukuda T, Tsumagari T (August 1983). "Effects of psychotropic drugs on the rage responses induced by electrical stimulation of the medial hypothalamus in cats". Japanese Journal of Pharmacology. 33 (4): 885–890. doi:10.1254/jjp.33.885. PMID6632385.
^Nakazawa Y, Kotorii M, Oshima M, Horikawa S, Tachibana H (October 1975). "Effects of thienodiazepine derivatives on human sleep as compared to those of benzodiazepine derivatives". Psychopharmacologia. 44 (2): 165–171. doi:10.1007/BF00421005. PMID709. S2CID13365554.
^Martucci N, Manna V, Agnoli A (April 1987). "A clinical and neurophysiological evaluation of clotiazepam, a new thienodiazepine derivative". International Clinical Psychopharmacology. 2 (2): 121–128. doi:10.1097/00004850-198704000-00005. PMID2885366.
^"RIZE TABLETS 5mg". Official Japanese Drug Information Sheet (Kusuri-no-Shiori). February 2016.
^Benvenuti C, Bottà V, Broggini M, Gambaro V, Lodi F, Valenti M (1989). "The pharmacokinetics of clotiazepam after oral and sublingual administration to volunteers". European Journal of Clinical Pharmacology. 37 (6): 617–619. doi:10.1007/BF00562556. PMID2575522. S2CID29397932.
^ abArendt R, Ochs HR, Greenblatt DJ (1982). "Electron capture GLC analysis of the thienodiazepine clotiazepam. Preliminary pharmacokinetic studies". Arzneimittel-Forschung. 32 (4): 453–455. PMID6125154.
^Ochs HR, Greenblatt DJ, Verburg-Ochs B, Harmatz JS, Grehl H (1984). "Disposition of clotiazepam: influence of age, sex, oral contraceptives, cimetidine, isoniazid and ethanol". European Journal of Clinical Pharmacology. 26 (1): 55–59. doi:10.1007/BF00546709. PMID6143670. S2CID44321356.
^Ochs HR, Greenblatt DJ, Knüchel M (1986). "Effect of cirrhosis and renal failure on the kinetics of clotiazepam". European Journal of Clinical Pharmacology. 30 (1): 89–92. doi:10.1007/BF00614202. PMID2872061. S2CID21304989.
^Colonna L, Cozzi F, Del Citerna F, Di Benedetto A, De Divitiis O, Furlanello F, et al. (1990). "[Multicenter study of the effectiveness and tolerance of clotiazepam in cardiology]". Minerva Cardioangiologica. 38 (1–2): 45–49. PMID1971433.
^Shimamine M, Masunari T, Nakahara Y (1993). "[Studies on identification of drugs of abuse by diode array detection. I. Screening-test and identification of benzodiazepines by HPLC-DAD with ICOS software system]". Eisei Shikenjo Hokoku. Bulletin of National Institute of Hygienic Sciences (111): 47–56. PMID7920567.