Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).
Toxoflavin (Trivialname, auch Xanthothricin oder oft als PKF118-310 bezeichnet) ist ein Alkaloid mit einer 7-Azapteridin-Grundstruktur. Es ist im Vergleich zur Grundstruktur von der es sich ableitet zweifach an Stickstoffatomen methyliert und zweifach an Kohlenstoffatomen oxidiert. Der Trivialname ist irreführend, da es sich nicht um ein Flavin handelt. Vielmehr ähnelt es dem Reumycin,[2] welches auch als Demethyltoxoflavin bezeichnet wird. Toxoflavin gehört zu den Pan-Assay Interference Compounds (PAINS). Seine Wirkung als Phytotoxin beruht auf dessen Eigenschaft, reversibel reduzierbar zu sein. Es kann daher unter physiologischen Bedingungen Wasserstoffperoxid bilden.[3]
Das inzwischen kommerziell leicht zugängliche 6-Chlor-3-methyluracil[8] sorgt als Edukt in modernen Synthesen von Toxoflavin für eine deutliche Verkürzung der Arbeitsschritte. Zunächst wird das Chloratom durch Methylhydrazin substituiert. Die Anellierung des zweiten Ringes erfolgt dann durch Umsetzung mit Formaldehyd und Natriumnitrit in einer Ein-Topf-Reaktion.[9]
↑Payal Rana, Russell Naven, Arjun Narayanan, Yvonne Will, Lyn H. Jones: Chemical motifs that redox cycle and their associated toxicity. In: MedChemComm. Band4, Nr.8, 2013, S.1175, doi:10.1039/c3md00149k.
↑K. G. Stern: Oxidation-reduction potentials of toxoflavin. In: The Biochemical journal. Band 29, Nummer 2, Februar 1935, S. 500–508, doi:10.1042/bj0290500, PMID 16745691, PMC 1266509 (freier Volltext).
↑F. Suzuki, H. Sawada, K. Azegami, K. Tsuchiya: Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. In: Journal of General Plant Pathology. Band70, Nr.2, 1. April 2004, S.97–107, doi:10.1007/s10327-003-0096-1.
↑C. Su, Y. Yan, X. Guo, J. Luo, C. Liu, Z. Zhang, W.-S. Xiang, S.-X. Huang: Characterization of the N -methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615. In: Organic & Biomolecular Chemistry. Band17, Nr.3, 2019, S.477–481, doi:10.1039/C8OB02847H.
↑M. A. McCoy, D. Spicer, N. Wells, K. Hoogewijs, M. Fiedler, M. G. J. Baud: Biophysical Survey of Small-Molecule β-Catenin Inhibitors: A Cautionary Tale. In: Journal of Medicinal Chemistry. Band65, Nr.10, 26. Mai 2022, S.7246–7261, doi:10.1021/acs.jmedchem.2c00228 (acs.org [PDF]).