Residuell endliche GruppeResiduell endliche Gruppen sind ein Begriff aus dem mathematischen Gebiet der Gruppentheorie. Es handelt sich um (unendliche) Gruppen, die in gewisser Weise durch endliche Gruppen approximiert werden können. DefinitionEine Gruppe heißt residuell endlich, wenn es zu jedem vom neutralen Element verschiedenen Element eine Untergruppe von endlichem Index
gibt. Mit anderen Worten
d. h. der Durchschnitt aller Untergruppen von endlichem Index besteht nur aus dem neutralen Element. Äquivalent dazu ist die Bedingung, dass es zu jedem vom neutralen Element verschiedenen Element einen Homomorphismus in eine endliche Gruppe mit geben soll. BeispieleNach dem Satz von Malcev ist jede endlich erzeugte Untergruppe der allgemeinen linearen Gruppe residuell endlich, für jeden kommutativen Ring mit Eins. Aus diesem Kriterium ergeben sich zahlreiche Beispiele residuell endlicher Gruppen:
Endlich erzeugte polyzyklische und nilpotente Gruppen sind residuell endlich.[1] Fundamentalgruppen kompakter 3-Mannigfaltigkeiten sind residuell endlich[2], obwohl im Allgemeinen nicht bekannt ist, ob sie zu Untergruppen von isomorph sind. Weiterhin gilt:
Die Baumslag-Solitar-Gruppen sind nicht residuell endlich. Es ist eine offene Frage, ob es hyperbolische Gruppen gibt, die nicht residuell endlich sind. Eigenschaften
Die folgenden Eigenschaften einer Gruppe sind äquivalent:
Topologische InterpretationDie Fundamentalgruppe eines CW-Komplexes ist genau dann residuell endlich, wenn es zu jeder kompakten Teilmenge der universellen Ũberlagerung eine endliche Überlagerung gibt, so dass eine Einbettung ist.[4] Dieses Kriterium kann in verschiedenen Situationen benutzt werden, um zu überprüfen, dass sich Immersionen zu Einbettungen in einer endlichen Ũberlagerung hochheben lassen. Es wird beispielsweise in Arbeiten zur Virtuell Haken-Vermutung[5] und im Beweis der Taubes-Vermutung von Friedl-Vidussi[6] verwendet. Bedeutung in der algebraischen GeometrieEs sei ein Schema endlichen Typs über . Dann ist der Homomorphismus genau dann injektiv, wenn residuell endlich ist. Literatur
Weblinks
Einzelnachweise
|