Hyperbolische MannigfaltigkeitIn der Mathematik sind hyperbolische Mannigfaltigkeiten Riemannsche Mannigfaltigkeiten mit konstanter negativer Schnittkrümmung. Sie spielen eine wichtige Rolle in der niedrig-dimensionalen Topologie, insbesondere in Thurstons Geometrisierungsprogramm. DefinitionEine hyperbolische Mannigfaltigkeit ist eine vollständige Riemannsche Mannigfaltigkeit mit Schnittkrümmung konstant . (Eine Riemannsche Metrik mit Schnittkrümmung konstant heißt hyperbolische Metrik. Eine hyperbolische Mannigfaltigkeit ist also eine Mannigfaltigkeit mit einer vollständigen hyperbolischen Metrik.) Äquivalente Definition 1: Eine hyperbolische Mannigfaltigkeit ist eine Riemannsche Mannigfaltigkeit, deren universelle Überlagerung isometrisch zum hyperbolischen Raum ist. Äquivalente Definition 2: Eine hyperbolische Mannigfaltigkeit ist eine Riemannsche Mannigfaltigkeit der Form , wobei der hyperbolische Raum und eine diskrete Untergruppe der Gruppe der Isometrien des hyperbolischen Raumes ist. Hyperbolische MonodromieWeil der hyperbolische Raum zusammenziehbar ist, muss die in Definition 2 verwendete Gruppe isomorph zur Fundamentalgruppe sein. Die sich aus Definition 2 ergebende Darstellung wird auch als Monodromiedarstellung oder hyperbolische Monodromie bezeichnet. Im Fall orientierbarer Mannigfaltigkeiten bildet die Monodromiedarstellung nach ab. Literatur
Weblinks
|