PentominoPentomino (auch Pentamino) ist ein Polyomino der Ordnung 5, d. h. ein (ebenes) Polygon, das sich ergibt, indem man 5 gleich große Quadrate so aneinanderlegt, dass die einzelnen Quadrate Kante an Kante liegen. Darüber hinaus bezeichnet Pentomino ebenfalls ein Geduldspiel für eine Person.[1] Unter dem Namen Pentominos erschien es als Zweipersonenvariante im Hallmarkverlag.[2] Die Spielsteine: PentominosEs gibt – bis auf Symmetrie – 12 verschiedene Pentominos. Das Wort Pentomino wurde vom Mathematiker Solomon W. Golomb erfunden und erstmals im Jahr 1954 in einem Artikel der Fachzeitschrift American Mathematical Monthly verwendet.[3] Polyominos als übergeordnete Gruppe wurden erstmals 1957 in Scientific American ausführlich diskutiert. Zum besseren Verständnis hat man die 12 Pentominos (bzw. Spielsteine) mit Buchstaben bezeichnet, die der ungefähren Form des Steins entsprechen. Die chiralen (orientierten) Spielsteine L, Y, N, P, Z und F stimmen nicht mit ihrem Spiegelbild überein; Wenn man jedoch einen dieser Steine wendet, erhält man sein Spiegelbild. Die 12 Pentaminos führen auf diese Weise zu insgesamt 18 Formen in den Pentomino-Spielen. Mit jedem einzelnen der Pentominos lässt sich die Ebene parkettieren,[4] bei den chiralen Pentominos sogar, ohne sie umzudrehen.[5] Geduldsspiel für eine PersonBei dem Geduldspiel Pentomino, auch Pentomino-Puzzle genannt, besteht die Aufgabe darin, aus den zwölf Pentominos als Spielsteinen (auch: Platten) – ähnlich wie bei Tangram – bestimmte Figuren zu legen:
X X XXX XXX XXXXX XXXXX XXXXXXX XXXXXXX XXXXXXXXX XXXXX XXX X Es gibt noch weitere Geduldspiele, wie das Geburtstagspuzzle, bei dem auf einem 8×8-Spielfeld zwölf Spielsteine so untergebracht werden müssen, dass die vier freibleibenden Quadrate ein bestimmtes Datum anzeigen. Spiel für zwei PersonenEin mögliches Regelwerk für ein Strategiespiel mit zwei Personen (oder mehr) wäre das folgende:
Käufliche Mehrpersonenspiele, die mit Pentomino- bzw. Polyomino-Spielsteinen arbeiten, gibt es mehrere. Eine (unvollständige) Liste:
In der Schlag-den-Star-Ausgabe vom 10. Dezember 2016 wurde das Spiel Katamino genannt und ohne Wendemöglichkeit mit einem gemeinsamen Pool aus 12 Teilen auf einem 8×8-Feld gespielt. 3D-PentominoAnstelle von Quadraten kann man die Spielsteine auch aus Würfeln bilden (sie werden dann auch Pentakuben genannt). Aus diesen Spielsteinen können dann, genau wie aus dem Somawürfel, viele verschiedene dreidimensionale Objekte gelegt werden, zum Beispiel Quader mit den folgenden Abmessungen:
Außerdem kann man einige der Spielsteine selbst vergrößert bauen. Jeder Würfel im nachzubildenden Stein wird durch einen 2x2x3-Block nachgebaut. Folgende Spielsteine lassen sich nachbauen: F mit 1, P mit 1082, U mit 10, Z mit 24, T mit 3, V mit 21, N mit 51, Y mit 7 und L mit 99 Lösungen. Pentomino als ComputerspielNeben der Form des Spiels zum Anfassen wurde (und wird) Pentomino oft als Tüftelei am Computer umgesetzt. Pentomino hat Alexei Paschitnow zu Tetris inspiriert. In dem von dem englischen Mathematiker John Horton Conway entworfenen „Spiel des Lebens“, einem zweidimensionalen zellulären Automaten, zeigt die relativ einfache Startfigur des F-Pentominos zunächst ein völlig chaotisches Verhalten, bevor es vom 1103. Schritt an eine oszillierende Struktur bildet. VariantenAn Stelle von Platten mit 5 Quadraten gibt es das Spiel auch mit Platten, die aus 6 Quadraten zusammengesetzt sind. Diese Variante heißt Hexamino und hat 35 verschiedene Platten. Heptamino hat 108 und Oktamino 369 verschiedene Platten. (Siehe Polyomino.) Die aus 4 Quadraten zusammengesetzten 5 verschiedenen Platten des Tetramino (mit nicht durch Drehungen erreichbare Spiegelungen 7 Formen) haben ihren Eingang in das Computerspiel Tetris gefunden. Anstelle von Quadraten können auch andere geometrische Figuren gewählt werden: gleichseitige Dreiecke, Sechsecke, Rechtecke, gar Gruppen aus zwei oder mehr verschiedenen Figuren. Man muss die Figuren auch nicht mit der vollen Kante aneinanderstoßen lassen, sondern kann sie zum Beispiel um die Hälfte verschieben. Die Variationsmöglichkeiten sind enorm. Das L-Spiel für zwei Personen ist ebenfalls eine Variante, hier wird allerdings nur mit einer Spielfigur (je Spieler) gespielt. „Parallel polarisierte“ SpielsteineEine Variante bilden die sogenannten „polarisierten“ Spielsteine. Denkt man sich die Ebene von senkrechten bzw. waagerechten (parallelen) „Polarisationsfeldern“ durchzogen, so kann man von den meisten Spielsteinen jeweils zwei Ausführungen unterscheiden, also praktisch eine „waagerechte“ sowie eine „senkrechte“ Variante. Nur die Spielsteine W, X und V sind sozusagen „in sich selbst“ polarisiert und kommen daher nur einfach vor. Selbstverständlich ist bei der Konstruktion von Puzzles nun darauf zu achten, dass die Teile alle ausschließlich in einer „Polarisationsrichtung“ gebraucht werden dürfen. Unter den genannten Voraussetzungen ergeben sich die folgenden 21 Teile:
Periodische MusterSind die zwölf Pentomino-Fliesen biegbar, so kann mit ihnen der Mantel eines passend dimensionierten geraden Kreiszylinders vollständig und ohne Überlappungen beklebt werden (Abbildung links). Während der Verlegung der Fliesen im Rechteck von vier Seiten Grenzen gesetzt sind, wird sie auf dem Zylinder in nur zwei Richtungen beschränkt; die Mantellinien sind für die Fliesen kein Hindernis. Das unbeschränkte Abrollen des Zylindermantels in eine Ebene liefert einen ebenen, unendlich langen Streifen mit der periodischen Wiederholung eines Musters, das aus je einer der zwölf Pentomino-Fliesen zusammengesetzt ist (Abbildung rechts). Die Idee der Periodizität lässt sich ausweiten, indem man die ganze Ebene so mit einem aus zwölf verschiedenen Pentomino-Platten zusammengesetzten Muster parkettiert, dass sie durch Translationen in zwei verschiedenen Richtungen auf sich abgebildet wird. Die Abbildung links zeigt den einfach zusammenhängenden Fundamentalbereich einer Parkettierung mit den Perioden 10 und 6. Im Unterschied zur Wechselbeziehung zwischen Streifen und Zylinder gibt es im Falle der doppelten Periodizität keine geschlossene Fläche, auf die sich der eingerahmte Fundamentalbereich längentreu abbilden lässt. Indessen kann man einen Torus, dessen Oberfläche durch äquidistante Längen- und Breitenkreise in sechzig Vierecke geteilt wird, nach dem durch den Fundamentalbereich (hier links) vorgegebenen Muster anmalen (Abbildung rechts). Anzahl der periodischen Lösungen im Vergleich mit einem Rechteck:
Literatur
WeblinksCommons: Pentomino – Sammlung von Bildern, Videos und Audiodateien
Einzelnachweise
|