In der Unterhaltungsmathematik ist eine -parasitäre Zahl (vom englischen parasitic number) eine natürliche Zahl, bei der man, wenn man sie mit einer einstelligen natürlichen Zahl multiplizieren will, einfach nur die am weitesten rechts stehende Ziffer, also die Einerziffer, nach ganz links verschieben muss, um das Ergebnis der Multiplikation zu erhalten.
Mit anderen Worten: Eine parasitäre Zahl durchläuft eine zyklische Permutation der Ziffern eine Stelle nach rechts. Die Ziffer ganz rechts fällt bei der Multiplikation mit weg und wird wieder ganz links angefügt. Die Reihenfolge aller anderen Ziffern bleibt gleich.
Den Namen parasitäre Zahl dürfte Clifford Pickover in seinem Buch Wonders of Numbers erstmals erwähnt haben.[1]
Wie zu Beginn dieses Artikels erwähnt, sind Nullen zu Beginn der Zahl nicht erlaubt.
Erzeugung von n-parasitären Zahlen und andere Überlegungen
Eine parasitäre Zahl kann aus einer Ziffer mit berechnet werden.
Sei und . Man erhält
Man erhält die -parasitäre Zahl mit der Startziffer .
Auch die Zahlen , , etc. sind -parasitäre Zahlen.
Es folgen ein paar Überlegungen:
In diesem Beispiel hat man es offensichtlich mit Zahlen zu tun, bei denen sich beliebig oft wiederholt. Bei einem Dezimalbruch nennt man diese sich wiederholende Zahl Periode. Sei also
Dann gilt
Man erhält eine Gleichung:
Löst man diese Gleichung, erhält man .
Wenn man aus der Periode dieser Zahl wieder eine ganze Zahl machen will, muss man sie mit multiplizieren, wobei die Länge der Periode ist (in diesem Beispiel ist ). Man erhält:
.
Diese Zahl ist, wie schon weiter oben erwähnt, eine -parasitäre Zahl.
Um etwas allgemeiner eine -parasitäre Zahl zu erzeugen, starte man wie vorher mit einer Ziffer mit und nehme die Periode von . Um diese Periode ganzzahlig zu machen, muss man sie noch mit multiplizieren, wobei die Länge der Periode ist.
Sei und . Dann ist . Die Dezimalbruchentwicklungen der Zahlen und lauten:
und
Diese Zahl hat eine Periodenlänge von . Man erhält die Zahl
Somit erhält man die -parasitäre Zahl
Mit dem oben dargestellten Algorithmus findet man allerdings nicht alle -parasitäre Zahlen, wie man an folgendem Beispiel erkennen kann:
Sei und . Man erhält
Ab Schritt 15 kommt man in eine Endlosschleife. Bei Schritt 16 und 17 und auch allen weiteren Schritten ändert sich nichts mehr, weil das Produkt der Multiplikation gleich viele Stellen hat wie vorher. Man muss noch eine weitere Bedingung beachten: Führende Nullen dürfen nicht verloren gehen. Ihre Position ist wichtig und muss im nächsten Schritt mitgenommen werden. Somit kann man obiges Beispiel weiterführen:
Dieser Algorithmus mit und beginnt sich nach 42 Schritten in der 42-stelligen -parasitären Zahl 102040816326530612244897959183673469387755 zu wiederholen. Danach erscheinen die hintersten Ziffern wieder zu Beginn der Zahl vorne, sie beginnt wieder periodisch zu werden (die letzten Stellen 755 kann man schon erkennen):
Schneller wäre es gegangen, wenn man einfach berechnet und die Periode dieser Bruchzahl betrachtet hätte, nämlich:
Die Zahl unter dem Periodenstrich ist die gesuchte 42-stellige -parasitäre Zahl.
Sei und . Wie man schon im obigen Beispiel erkennen kann (zum Beispiel bei den Schritten 15, 35, 37, 39, 41 und 42), muss man hie und da die führende Null bei dem Algorithmus beibehalten. Man erhält (wenn man in diesem Beispiel bei den Schritten 5 und 6 die führende Null beibehält):
Auch hier bringt der Algorithmus nach 6 Schritten in der 6-stelligen -parasitären Zahl 102564 nur noch bekannte Ziffernfolgen hervor. Im Schritt 10 erscheinen zum Beispiel schon die vier hintersten Ziffern wieder zu Beginn der Zahl:
Wieder wäre es schneller gegangen, wenn man einfach berechnet und die Periode dieser Bruchzahl betrachtet hätte, nämlich:
Die Zahl unter dem Periodenstrich ist die gesuchte 6-stellige -parasitäre Zahl.
Sei und . Man erhält:
und man erhält
Diese 18-stellige -parasitäre Zahl 315789473684210526 ist aber nicht die kleinste -parasitäre Zahl, wie die Tabelle im nächsten Abschnitt zeigt (im Speziellen ist diese Zahl sogar exakt das Dreifache der kleinsten -parasitären Zahl).
Tabelle
Es folgt eine Tabelle mit den kleinsten -parasitären Zahlen (also den Dyson-Zahlen). (Folge A092697 in OEIS)
Clifford Pickover nennt in seinem Buch Wonders of Numbers parasitäre Zahlen , deren letzte Ziffer nicht gleich der Zahl n ist, die mit der Zahl multipliziert wird, pseudoparasitäre Zahlen. In der obigen Tabelle ist dann 142857 pseudo-5-parasitär, weil sie nicht mit der Ziffer 5, sondern mit der Ziffer 7 endet.[3]
Eigenschaften
Sei eine -parasitäre Zahl.
Dann erhält man weitere -parasitäre Zahlen, indem man die Ziffern von aneinanderreiht.
Beispiel:
Es ist eine -parasitäre Zahl (wie schon weiter oben gezeigt wurde). Dann sind aber auch die Zahlen , , etc. -parasitäre Zahlen.
Sei .
Dann sind alle Repdigits (also Zahlen, die ausschließlich durch identische Ziffern dargestellt werden wie zum Beispiel 444, 77777, etc.) -parasitäre Zahlen.
Parasitäre Zahlen in anderen Zahlsystemen
Die folgende Tabelle gibt die kleinsten -parasitären Zahlen im Duodezimalsystem (also mit Basis) an (wobei die umgedrehte 2, also ᘔ, im Dezimalsystem 10 bedeutet (somit sei ᘔ=10) und die umgekehrte 3, also Ɛ, im Dezimalsystem 11 bedeutet (somit sei Ɛ=11)). Nullen zu Beginn der -parasitären Zahlen sind wieder nicht erlaubt:
Man kann erkennen, dass man bei Schritt 4 die kleinste -parasitäre Zahl 2497 erhält. Danach erscheinen die hintersten Ziffern wieder zu Beginn der Zahl vorne, sie beginnt wieder periodisch zu werden (die letzten beiden Stellen 97 kann man im Schritt 6 schon vorne und hinten erkennen). Somit ist 2497 die kleinste -parasitäre Zahl im Duodezimalsystem, also zur Basis .
Weiteres
Wenn man die kleinste Zahl wissen will, die mit 1 beginnt, sodass lediglich durch Verschieben der äußersten linken Ziffer 1 von nach rechts erhalten wird, dann gibt die folgende Liste Auskunft (beginnend mit aufsteigendem ):
Diese Zahlen sind auch gleichzeitig die Perioden von . Die folgende Liste gibt Auskunft, wie viele Stellen diese Perioden haben (wieder beginnend mit aufsteigendem ):
Sei . Dann kann man aus den obigen beiden Listen und deren Periodenlänge 42 ablesen und es gilt:
Die Zahl unter dem Periodenstrich ist die gesuchte 42-stellige -parasitäre Zahl (die schon weiter oben erwähnt wurde). Sie beginnt mit 1 und es gilt:
Tatsächlich erhält man das Ergebnis, indem man nur die äußerste linke Ziffer 1 von nach ganz rechts verschiebt. Diese Zahl ist aber nicht die kleinste -parasitäre Zahl (die ist 142857, wie man obiger Tabelle entnehmen kann). Meistens erhält man aber die kleinste -parasitäre Zahl.