Der Begriff Harshad-Zahl wurde vom indischen Mathematiker D. R. Kaprekar eingeführt und ist vom Sanskrit-Wort harsha („Freude“) abgeleitet, während Niven-Zahl auf den Mathematiker Ivan M. Niven zurückgeht, der diese Zahlen auf einem Kongress im Jahre 1977 beschrieb.[1]
Harshad-Zahlen nennt man auch n-Harshad-Zahlen (oder n-Niven-Zahlen), wenn man sie in der Basis n betrachtet.
Die ersten n-Harshad-Zahlen in der Basis 12 sind (wobei mangels weiterer Ziffern für 10 und für 11 steht):
Beispiel:
ist keine n-Harshad Zahl für die Basis 10:
hat die Quersumme , es ist aber kein Teiler von .
ist aber eine n-Harshad Zahl für die Basis 12:
ist im Dezimalsystem die Zahl . Die Quersumme von ist (im Dezimalsystem also ). Es ist tatsächlich ein Teiler von (im Dezimalsystem ).
Die kleinsten , sodass eine n-Harshad-Zahl zur Basis 12 ist, sind die folgenden (im Dezimalsystem geschrieben):
Die kleinsten , sodass keine n-Harshad-Zahl zur Basis 12 ist, sind die folgenden (im Dezimalsystem geschrieben):
Eigenschaften
Das oben angegebene Beispiel mit der Zahl 777 lässt sich auf alle 3-stelligen natürlichen Zahlen desselben Typs verallgemeinern:
Jede natürliche Zahl der Form , wobei eine beliebige Ziffer von 1 bis 9 darstellen kann, ist im Dezimalsystem eine Harshad-Zahl (lässt sich also durch ihre Quersumme teilen).
Der Beweis ergibt sich aus folgender Überlegung:
Nun ist aber die Quersumme von .
Somit ist jede natürliche Zahl der Form das 37-fache ihrer Quersumme, also eine Harshad-Zahl. q. e. d.
Alle ganzen Zahlen zwischen 0 und der Basis n sind n-Harshad-Zahlen.
Im Dezimalsystem gibt es keine 21 aufeinander folgende Harshad-Zahlen.[2][3]
Im Dezimalsystem gibt es unendlich viele 20 aufeinander folgende Harshad-Zahlen. Die kleinste davon ist größer als .[4]
erstes Auftreten von n aufeinander folgenden Harshad-Zahlen
n
erstes Auftreten von n aufeinander folgenden Harshad-Zahlen (Folge A060159 in OEIS)[5]
unbekannt
unbekannt
unbekannt
unbekannt
Mit Basis n gibt es keine 2n+1 aufeinander folgende n-Harshad-Zahlen (Verallgemeinerung der weiter oben stehenden Eigenschaft).[3][6]
Mit Basis n gibt es unendlich viele 2n aufeinander folgende Harshad-Zahlen (Verallgemeinerung der weiter oben stehenden Eigenschaft).[3][6][7]
Sei die Anzahl der Harshad-Zahlen und sei . Dann gilt:[8]
Beispiel:
Es gibt unter 100000 genau 11872 Harshad-Zahlen. Somit ist und . Und tatsächlich gilt
Eine nivenmorphe Zahl (oder harshadmorphe Zahl) für eine Basis n ist eine ganze Zahl t, so dass eine Harshad-Zahl N existiert, dessen Quersumme t ist, und t, geschrieben in dieser Basis n, die Zahl N in dieser Basis n beschreibt.
Beispiel 1:
ist eine nivenmorphe Zahl für die Basis 10:
ist eine Harshad-Zahl (zur Basis n=10). Die Quersumme von ist . Es ist tatsächlich ein Teiler von .
Beispiel 2:
ist eine nivenmorphe Zahl für die Basis 12:
ist eine Harshad-Zahl (zur Basis n=12) und ist im Dezimalsystem die Zahl . Die Quersumme von ist (im Dezimalsystem also 11). Es ist tatsächlich ein Teiler von (im Dezimalsystem ).
Die nächste Liste gibt die jeweils kleinste Zahl (im Dezimalsystem) an, deren Quersumme n ist und die durch n teilbar ist (falls es keine solche Zahl gibt, wird 0 angegeben):
Zum Beispiel hat die Quersumme und tatsächlich ist ein Teiler von . Somit ist eine nivenmorphe Zahl zur Basis 10.
Eigenschaften:
Alle positiven ganzen Zahlen mit Basis 10 sind nivenmorphe Zahlen, außer der Zahl 11.[9]
Alle positiven geraden ganzen Zahlen mit Basis n>1 sind nivenmorphe Zahlen zur Basis n, außer n+1.
Alle positiven ungeraden ganzen Zahlen mit Basis n>1 sind nivenmorphe Zahlen zur Basis n.
Multiple Harshad-Zahlen
Eine multiple Harshad-Zahl ist eine Harshad-Zahl, welche, durch seine Quersumme dividiert, wieder eine (andere) Harshad-Zahl ergibt.[10]
Beispiel 1: ist eine multiple Harshad-Zahl, weil , , und ebenfalls Harshad-Zahlen sind. Man bezeichnet diese Zahl auch als MHN-4, man kann also vier (verschiedene) weitere Harshad-Zahlen daraus machen.
Beispiel 2: ist eine MHN-12, man kann also 12 verschiedene weitere Harshad-Zahlen durch Division mit ihren jeweiligen Quersummen (die erste Quersumme ist ) finden.