Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). Brechungsindex: Na-D-Linie, 20 °C
Der pKS-Wert in Dimethylsulfoxid (DMSO) ist in der nebenstehenden Infobox angegeben.
Physikalische Eigenschaften
Acetophenon ist eine farblose bis gelbliche Flüssigkeit mit einem süßen, an Orangenblüten erinnernden Geruch.[2] Unter Normaldruck siedet die Verbindung bei 202 °C. Die Dampfdruckfunktion ergibt sich nach Antoine entsprechend log10(P) = A−(B/(T+C)) (P in bar, T in K) mit A = 4,64896, B = 2006,397 und C = −43.472 im Temperaturbereich von 310 bis 475 K.[12] Acetophenon bildet mit Wasser ein azeotrop siedendes Gemisch bei 98 °C und 82 % Wasseranteil.[13]
Zusammenstellung der wichtigsten thermodynamischen Eigenschaften
Acetophenon ist aufgrund seiner reaktionsfähigen Struktur Ausgangsstoff zahlreicher Synthesen als Ausgangs- oder Zwischenprodukt für andere Duftstoffe und Pharmazeutika sowie Kunstharze. Weiterhin ist er als hochsiedendes Lösungsmittel für Farben und Harze einsetzbar.
Sicherheitshinweise
Acetophenon als reiner Stoff ist beim Verschlucken gesundheitsschädlich. Er reizt die Augen und kann bei Einwirkung auf die ungeschützte Haut eine Dermatitis hervorrufen. Als Spritzschutz sollten geeignete Handschuhe getragen werden. In höheren Konzentrationen wirkt er hypnotisch, daher auch die Synonymbezeichnung Hypnon. Die Dämpfe erzeugen in einer Konzentration von 80 ppm bei einer Einwirkung von über einer Stunde starke Vergiftungserscheinungen.
Acetophenon ist schwer entzündlich und wenig flüchtig. Die Dämpfe sind viel schwerer als Luft. Mit starken Oxidationsmitteln und starken Basen kann es zu stark exothermen Reaktionen kommen.
Über 300 °C kommt es zur Zersetzung von Acetophenon. Dabei können Benzol, Biphenyl, 1,4-Diphenylbenzol, Kohlenstoffmonoxid, Methan, Wasserstoff, Ethen und/oder Toluol entstehen.
↑Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R., "Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution", J. Am. Chem. Soc., (1975) 97, 7006–7014. doi:10.1021/ja00857a010
↑David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Physical Constants of Organic Compounds, S. 3-6.
↑ abW. M. Haynes (Hrsg.): CRC Handbook of Chemistry and Physics. 97. Auflage. (Internet-Version: 2016), CRC Press / Taylor and Francis, Boca Raton FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-3.
↑C. Friedel, J.-M. Crafts: Sur une nouvelle méthode générale de synthèse des combinaisons aromatiques in Annales de chimie et de physique, Ser.6,T. 1 (1884) 449ff.
↑Rolf Werner Soukup: Chemiegeschichtliche Daten organischer Substanzen, Version 2020, S. 5 pdf.
↑Stull, D. R., Jr.: The Chemical Thermodynamics of Organic Compounds, Wiley, New York, 1969.
↑N. M. Phillip: Adiabatic and isothermal compressibilities of liquids. In: Proc. Indian Acad. Sci. A9, Nr.2, 1939, S.109–120.
↑ abTeja, A.S.; Rosenthal, D.J.: The critical pressures and temperatures of ten substances using a low residence time flow apparatus in Experimental Results for Phase Equilibria and Pure Component Properties in DIPPR DATA Series No. 1, 1991.
↑Teja, A.S.; Anselme, M.J.: The critical properties of thermally stable and unstable fluids. I. 1985 results in AIChE Symp. Ser., 1990, 86, 279, 115–121.
↑ abcE. Brandes, W. Möller: Sicherheitstechnische Kenngrößen – Band 1: Brennbare Flüssigkeiten und Gase, Wirtschaftsverlag NW – Verlag für neue Wissenschaft GmbH, Bremerhaven 2003.
↑Technische Regel für Gefahrstoffe TRGS 727, BG RCI Merkblatt T033 Vermeidung von Zündgefahren infolge elektrostatischer Aufladungen, Stand August 2016, Jedermann-Verlag Heidelberg, ISBN 978-3-86825-103-6.