মাৰ্চেলিয়ান চাহিদা ফলনব্যষ্টি অৰ্থনীতিত, কোনো উপভোক্তাৰ মাৰ্চেলিয়ান চাহিদা ফলনে (অৰ্থনীতিবিদ আলফ্ৰেড মাৰ্চেলৰ সন্মানত) এই কথা নিশ্চিত কৰে যে সেই উপভোক্তাই প্ৰদান কৰা মূল্য আৰু আয় বা সম্পত্তিৰে কোনো পণ্য কিমান ক্ৰয় কৰিব, যদিহে তেওঁ উপযোগিতা বৃহদায়িত কৰে। মাৰ্চেলিয়ান চাহিদাক কেতিয়াবা ৱালৰাছিয়ান চাহিদাও বোলা হয় (অৰ্থনীতিবিদ লিয়ন ৱালৰাছৰ সন্মানত)। মাৰ্চেলিয়ান চাহিদাক ক্ষতিপূৰণহীন চাহিদাও বোলা হয় কাৰণ মাৰ্চেলৰ বিশ্লেষণত সম্পত্তি প্ৰভাৱ পৃথক কৰা হোৱা নাছিল। উপযোগিতা বৃহদায়ন সমস্যাত L সংখ্যক পণ্য গণ্য কৰা হয় মূল্য সদিশ p আৰু চয়ন কৰিবলগীয়া সদিশ x ৰ সৈতে। উপভোক্তাৰ আয় I, আৰু সেয়ে সাধ্য বাণ্ডলৰ বাজেট চেট হ'ল: য'ত মূল্য সদিশ আৰু পৰিমাণ সদিশৰ বিন্দু পূৰণফল। উপভোক্তাৰ উপযোগিতা ফলন হ'ল: এনে ক্ষেত্ৰত মাৰ্চেলিয়ান চাহিদা সাযুজ্য হ'ল: অনন্যতাক সাযুজ্য বোলা হৈছে কাৰণ সাধাৰণতঃ ই চেট-মানৰ হ'ব পাৰে- একাধিক বাণ্ডলে একেই বৃহদায়িত উপযোগিতা প্ৰদান কৰিব পাৰে। কোনো কোনো ক্ষেত্ৰত প্ৰত্যেক মূল্য সদিশ আৰু আয়ৰ জোৰাৰ বাবে এক অনন্য উপযোগিতা-বৃহদায়িত কৰা বাণ্ডল থাকে; তেনে ক্ষেত্ৰত, এটি ফলন হয়, আৰু এই ফলনেই মাৰ্চেলিয়ান চাহিদা ফলন। যদি উপভোক্তাৰ পছন্দসমূহ উত্তল আৰু প্ৰত্যেক পণ্যৰ মূল্য ধনাত্মক আৰু শূন্যৰ অসমান, তেন্তে এটি অনন্য উপযোগিতা বৃহদায়িত কৰা বাণ্ডল থাকে।:156 এই কথা প্ৰমাণ কৰিবলৈ, ধৰি লওক দুই অসমান বাণ্ডল আছে, আৰু , যিয়ে উপযোগিতা বৃহদায়িত কৰে। তেন্তে আৰু ক সমানেই পছন্দ কৰা হয়। কাৰণ পছন্দসমূহ দৃঢ়ভাৱে উত্তল, মিশ্ৰিত বাণ্ডল হ'ব উভয়তকৈ দৃঢ়ভাৱে অধিক পছন্দ কৰা বাণ্ডল। এই বাণ্ডল সাধ্যও হয়, কাৰণ বাজেট চেটো উত্তল। কিন্তু তেনে হ'লে ইষ্ট নহয়। ই এক অন্তৰ্বিৰোধ। নিৰন্তৰতাবৃহদায়িত উপপাদ্যই সূচাই যে যদি:
তেন্তে এটি উচ্চ-অৰ্ধনিৰন্তৰ সাযুজ্য। তদুপৰি, যদি অনন্য, তেন্তে ই এটি নিৰন্তৰ ফলন আৰু ৰ।:156,506 এই ফলাফল পূৰ্বতে লাভ কৰা ফলাফলৰ সৈতে এক কৰিলে, যদি উপভোক্তাৰ পছন্দসমূহ দৃঢ়ভাৱে উত্তল, তেন্তে মাৰ্চেলিয়ান চাহিদা অনন্য আৰু নিৰন্তৰ। তাৰ বিপৰীত, যদি পছন্দসমূহ উত্তল নহয়, তেন্তে মাৰ্চেলিয়ান চাহিদা অনন্য আৰু নিৰন্তৰ নহ'বও পাৰে। সমসত্ত্বতামাৰ্চেলিয়ান চাহিদা ফলনে শূন্য মাত্ৰাৰ সমসত্ত্বতা প্ৰদৰ্শন কৰে। অৰ্থাত্ প্ৰত্যেক ধ্ৰুৱক ৰ বাবে, এই কথা বুজিবলৈ সহজ। ধৰি লওক আৰু ভাৰতীয় টকাত মাপ কৰা হৈছে। যেতিয়া , আৰু পইচাত মাপ কৰা হৈছে। টকাৰেই মাপ কৰা হওক বা পইচাৰেই, আয় আৰু মূল্য একেই থাকে, সেয়ে চাহিদাও একেই থাকে। মাপৰ একক সলনি কৰিলে মাৰ্চেলিয়ান চাহিদা সলনি নহয়। উদাহৰণতলৰ উদাহৰণকেইটাত কেৱল দুটা পণ্য থকা বুলি ধৰি লোৱা হৈছে। ১। কব-ডৌগ্লাছ উপযোগিতা ফলন বাধিত বৃহদায়ন সমস্যা সমাধান কৰিলে এই মৰ্চেলিয়ান চাহিদা ফলন পোৱা যায়: ২। CES উপযোগিতা ফলন: তেন্তে দুয়োটা উদাহৰণতেই, পছন্দ দৃঢ়ভাৱে উত্তল, সেয়ে চাহিদা অনন্য আৰু চাহিদা ফলন নিৰন্তৰ পোৱা গ'ল। 3. ৰৈখিক উপযোগিতা: এই উপযোগিতা ফলন দুৰ্বলভাৱে উত্তল, আৰু এই ক্ষেত্ৰত চাহিদা অনন্য নহয়: যেতিয়া , উপভোক্তাই নিজৰ আয় যিকোনো সাধ্য বাণ্ডলত খৰচ কৰিব পাৰে, য'ত আয় সম্পূৰ্ণভাৱে খৰচ কৰা হয়। ৪। উপভোক্তা ফলনে হ্ৰাস নোহোৱা প্ৰান্তিক প্ৰতিস্থাপনৰ দৰ প্ৰদাৰ্শন কৰে: উপযোগিতা ফলন অৱতল নহয়, আৰু এই ক্ষেত্ৰত চাহিদা নিৰন্তৰ নহয়: যেতিয়া , উপভোক্তাই কেৱল পণ্য ১ ক্ৰয় কৰে, আৰু যেতিয়া , উপভোক্তাই কেৱল পণ্য ২ ক্ৰয় কৰে (যেতিয়া তেতিয়া চাহিদা সাযুজ্যত দুটা বাণ্ডল থাকে, কেৱল পণ্য ১ ক্ৰয় কৰা হয় বা কেৱল পণ্য ২ ক্ৰয় কৰা হয়)। তথ্য সংগ্ৰহ
লগতে চাওক |