مصفوفة مشابهة
في علم الجبر الخطي، توصف مصفوتين A و B مربعتين (أي بأبعاد n×n) بالـ تشابه في مجال K في حال وجود مصفوفة P في مجال K بحيث: وأحد معاني تحويل التشابه هو تحويل مصفوفة A إلى مصفوفة B الخصائصالتشابه هي علاقة تطابق في مجال المصفوفات المربعة. تتشارك المصفوفات المتشابهة بخصائص متعددة:
وهناك سببين لهذا التشابه:
وبسبب هذه الخواص، عاذة ما تحول أي مصفوفة مربعة A إلى مصفوفة مشابهة B بسيطة مما يجعل أمرد دراستها وتحليلها أسهل. ملاحظاتلا يعتمد تشابه المصفوفات على أساسيات المجال: فمثلا، إذا كانت L مجال يحتوي على المجال فرعي K، وA وB هما مصفوفتين في مجال K، فتكون المصفوفتين A و B متشابهتين في المجال K الا في حالة تشابههما في المجال L. في تعريف التشابه نفسه، إذا اختيرت المصفوفة × كمصفوفة مقايضة (permutation matrix) فتكون المصفوفتين A وB مشابهة التقايض (permutation-similar) أيضا. وكذلك، إذا اختيرت المصفوفة × كمصفوفة أحادية الوحدة (unitarily matrix) فتكون المصفوفتين A وB مكافئة في أحادية الوحدة أيضا. ونظرية الطيف () فإن كل مصفوفة متعامدة (normal matrix) هي متكافئة في أحادية الوحدة مع مصفوفة قطرية (diagonal matrix). تطبيقات
مجالات أخرى
|